Answer:
I think it is AM and frequency
Explanation:
Sorry if i'm wrong ;)
In dilute solutions, the unit osmolarity is being used. It usually has units milliosmols per liter of solution or mOsmol/L. An osmole defines the number of moles of the solute that would have an effect on the osmotic pressure of the solution. Osmolarity is calculated by the product of the molarity and the number of particles in the solution which is 2 for potassium chloride. We calculate as follows:
Osmolarity = molarity (# of particles)250 mosmol/L ( 1 osmol / 1000 osmol) = x moles / .100 L (2)
x moles = 0.0125 mol KCl
mass KCl = 0.0125 mol KCl ( 39 + 35.5 g/mol) = 0.93125 g KCl
☃️ Chemical formulae ➝
How to find?
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.
Solution:
❍ Molecular weight of
= 2 × 126.90
= 253.80
= 254 (approx.)
❍ Given weight: 12.7
Then, no. of moles,
⇛ No. of moles = 12.7 / 254
⇛ No. of moles = 0.05 moles
⚘ No. of moles of Iodine molecule in the given weight = <u>0.05</u><u> </u><u>moles </u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer: 0.0725ppm
Explanation:
133.4g of MgBr2 dissolves in 1.84L of water.
Therefore Xg of MgBr2 will dissolve in 1L of water. i.e
Xg of MgBr2 = 133.4/1.84 = 72.5g
The concentration of MgBr2 is 72.5g/L = 0.0725mg/L
Recall,
1mg/L = 1ppm
Therefore, 0.0725mg/L = 0.0725ppm