Answer : The correct answer is 1) AlCl₃ - CH₃Cl 2) HNO₃ -H₂SO₄ at room temperature 3) Fuming HNO₃ -H₂SO₄ at 90-100 ⁰ C heat .
I think this reaction is forming 2,4,6- trinitrotoluene from benzene, since the product is not mentioned. Following are the steps to convert Benzene to 2,4,6 trinitrotoluene .
Step 1: Conversion of Benzene to Toluene .
Benzene can be converted to toluene by Friedel Craft Alkylation of benzene . In this reaction reagent AlCl₃ and Ch3Cl is used . Electrophile CH³⁺ is produced which attached on carbon of benzene and formation of Toluene and HCl occur.

Step 2 : Conversion of Toluene to dinitrotoluene.
Dinitritoluene is prepared from toluene by Nitration . This reaction uses Electrophilic substitution mechanism . The reagents used are HNO₃ and H₂SO₄ at room temperature . These reagents produces NO₂⁺ ( nitronium ion ), a electrophile which attacks on C2 and C4 Carbon atoms of Toluene.
Toluene 
Step 3) Conversion of Dinitro toluene to trinitrotoluene.
This reaction is extended nitration of toluene . Further nitration is done in extreme condition . The temperature of reaction is increased to 90- 100 ⁰ C . Due to which there is more production of NO²⁺ ion occurs from HNO₃ -H₂SO₄ and they attack on C6 carbon atom of dinitrotoluene which forms 2,4,6- trinitrotoluene.
Dinitrotoluene 
So over all reaction uses three reagents in order :

Answer:
if you tell me how much is needed and how much you have then i can answer it, but there is not enough information provided to answer to that question.
Explanation:
4) is correct
This is because water is polar and it will mix with a polar solvent. A good rule for remembering the behavior of non-polar and polar compounds when it comes to being miscible is that "like dissolves like."
Answer:
M = 0.23 M
Explanation:
Given data:
Molarity of solution = ?
Mass of NH₄Br = 4.50 g
Volume of solution = 213 mL (213 mL× 1L /1000 mL = 0.213 L)
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of NH₄Br:
Number of moles = mass/molar mass
Number of moles = 4.50 g / 97.94 g/mol
Number of moles = 0.05 mol
Molarity:
M = 0.05 mol/ 0.213 L
M = 0.23 M