Answer:
See Explanation
Explanation:
It is a common observation that a strip of aluminium metal in aqueous copper(II)Sulfate does not show any visible reaction. Aluminium is normally expected to displace copper in solution since it is higher than copper in the electrochemical series.
The reason for this is that aluminium forms an oxide film around its surface which prevents reaction with aqueous copper(II)Sulfate. This oxides film protects the aluminium surface such that it is now unable to react with the aqueous copper(II)Sulfate
Answer:
Explanation:
Potential energy is converted into kinetic energy. I am 100% positive.
Answer: The equilibrium concentration of hydrogen gas is 0.0269 M
Explanation:
The chemical reaction follows the equation:

At t = 0 0.044M 0.044M 0.177M
At
(0.044-x)M (0.044-x)M (0.177+x)M
The expression for
for the given reaction follows:
![K_c=\frac{[HI]^2}{[H_2]\times [I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5Ctimes%20%5BI_2%5D%7D)
We are given:

Putting values in above equation, we get:


Hence, the equilibrium concentration of hydrogen gas is (0.044-x) M =(0.044-0.0171) M= 0.0269 M
"Electric charge: the proton and electron are electrically charged, while the neutron is not. The proton and electron, however, are oppositely charged. Role in the atom: Protons and neutrons are closely bound together in the nucleus of an atom, while electrons are spread out around the nucleus."
Mass of CaCl₂ = 0.732 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
