1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
9

Suppose that a certain radioactive element decays in such a way that every twenty years the mass of a sample of the element is o

ne third of the initial mass. Given a 100 gram sample of the element, how much of the element remains after 17 years
Mathematics
1 answer:
Thepotemich [5.8K]3 years ago
5 0

Answer:

Therefore 21.09 gram of the element remains after 17 years.

Step-by-step explanation:

The decay rate is proportional to the number of nuclei.

-\frac{dN}{dt}\propto N

\Rightarrow -\frac{dN}{dt}=\lambda N

\Rightarrow \frac{dN}{N}=-\lambda \ dt

Integrating both sides

\Rightarrow \int\frac{dN}{N}=\int-\lambda \ dt

\Rightarrow ln N= -\lambda t+C

Initially N=N_0 , when t=0

ln N_0= -\lambda .0+C

\Rightarrow C=ln \ N_0

The equation becomes

ln N=-\lambda t+ln N_0

\Rightarrow ln N-ln N_0=-\lambda t

\Rightarrow \ln\frac{N}{N_0}=-\lambda t

\Rightarrow N=N_0e^{-\lambda t}

N= Remaining mass after t time

N_0= initial mass of the sample

\lambda= decay constant

Given that, every 12 years the mass of a sample of a the element is one third of the initial mass.

Here, N=\frac13N_0, t= 12 years

\therefore \frac13N_0=N_0e^{-12\lambda }

\Rightarrow e^{-12\lambda }=\frac13

\Rightarrow ln e^{-12\lambda }=ln\frac13                    

\Rightarrow ln e^{-12\lambda }=ln1-ln3            [ ln\frac ab = ln a- ln b ]

\Rightarrow {-12\lambda }= -ln 3                      [ln e^a=a and ln 1=0]

\Rightarrow\lambda }=\frac{ ln 3}{12}

The equation becomes

\therefore N=N_0e^{-\frac{ln3}{12} t}

Given that, the initial amount N_0= 100 \ gram and t =17

\therefore N=100e^{-\frac{ln3}{12} 17}

\Rightarrow N=21.09 gram

Therefore 21.09 gram of the element remains after 17 years.

You might be interested in
If ABCD is a parallelogram, what can we say about the diagonals BD and AC?
lidiya [134]
B. The diagonals bisect each other.
4 0
3 years ago
Read 2 more answers
Two antibiotics are available as treatment for a common ear infection in children. • Antibiotic A is known to effectively cure t
Scrat [10]

Step-by-step explanation:

the probability of A working is 60% or 0.6, so the probability it does not work is 40% or 0.4.

the probability of B working is 90% or 0.9, so the probability it does not work is 10% or 0.1.

plan 1

it is the probabilty that either A works, or (if it is not working) B works.

0.6 + 0.4×0.9 = 0.6 + 0.36 = 0.96

plan 2

either B works, or (if it is not working) A works

0.9 + 0.1×0.6 = 0.9 + 0.06 = 0.96

both plans have the same success probability.

5 0
2 years ago
Can u solve the answer
pickupchik [31]

Answer:

She needs 50 ft² of wood to cover the table

Step-by-step explanation:

You need to know the formula for area of a trapezoid, which is

A = (B1 + B2)h/s     (add the bases together, multiply by the height, then divide

                                by 2)

We are given B1 = 12, B2 = 8, and h = 5, so plug them in and simplify

A = (12 + 8)(5)/2

 

    A = (20)(5)/2

       A = 100/2

         A = 50 ft²

5 0
3 years ago
X2 + 3x - 108 = 0<br> What is the answer?
worty [1.4K]

Answer:

The answer is x=9 and/or x = -12

Step-by-step explanation:

This is a quadratic formula meaning that you must take the a value (1) b value (3) and the c value (108) and plug it into the quadratic formula.

\frac{-3±\sqrt{9+4*1*-108} }{2}

which simplifies to -3 add or subtract the sqrt of 441 divided by two.

5 0
3 years ago
20 points! Will mark the brainliest!
andrew-mc [135]
\dfrac{ \dfrac{x+3}{4x^2-16} }{ \dfrac{2x^2+10x+12}{2x-4} }

-----------------------------------------------------------------------------------
Write the divide fraction horizontally:
-----------------------------------------------------------------------------------

= \dfrac{x+3}{4x^2-16} \div \dfrac{2x^2+10x+12}{2x-4}

-----------------------------------------------------------------------------------
Factorise the numerators and denominators when possible:
-----------------------------------------------------------------------------------

= \dfrac{x+3}{4(x+2)(x-2)} \div \dfrac{ 2(x + 3) (x + 2)}{2(x-2)}

-----------------------------------------------------------------------------------
Convert the divide fraction to multiplication fraction
-----------------------------------------------------------------------------------

= \dfrac{x+3}{4(x+2)(x-2)} \times \dfrac{2(x-2)}{2(x+3)(x+2)}

-----------------------------------------------------------------------------------
Cancel the factors
-----------------------------------------------------------------------------------
= \dfrac{1}{4(x+2)} \times \dfrac{1}{(x+2)}

-----------------------------------------------------------------------------------
Combine to single fraction
-----------------------------------------------------------------------------------

= \dfrac{1}{4(x+2)^2}



4 0
3 years ago
Other questions:
  • Becky and tommy are asked to solve -4x-25=8x+15 identity where one of them made an error
    6·2 answers
  • If the pressure is 6 pounds per inch when the temperature is 440 F, find the pressure exerted when the temperature of the gas is
    15·1 answer
  • 18 divided by 20 equals
    13·2 answers
  • Factorise fully 16c^4p^2+20cp^3​
    14·2 answers
  • Help anyone can help me do this question,I will mark brainlest.​
    5·1 answer
  • Ignore the one I put :&gt;
    9·1 answer
  • Select the table that represents a linear function. (Graph them if necessary)
    10·2 answers
  • Find the slope and the y-intercept of the graph of y=6x – 5.
    13·2 answers
  • Si 22 patos tienen comida para 10 dias, si tenemos 5 patos ¿cuantos días tendrían comida?
    5·1 answer
  • What is the value of digit 3 in the number 2314^5
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!