Answer:
Therefore 21.09 gram of the element remains after 17 years.
Step-by-step explanation:
The decay rate is proportional to the number of nuclei.
![-\frac{dN}{dt}\propto N](https://tex.z-dn.net/?f=-%5Cfrac%7BdN%7D%7Bdt%7D%5Cpropto%20N)
![\Rightarrow -\frac{dN}{dt}=\lambda N](https://tex.z-dn.net/?f=%5CRightarrow%20-%5Cfrac%7BdN%7D%7Bdt%7D%3D%5Clambda%20N)
![\Rightarrow \frac{dN}{N}=-\lambda \ dt](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cfrac%7BdN%7D%7BN%7D%3D-%5Clambda%20%5C%20dt)
Integrating both sides
![\Rightarrow \int\frac{dN}{N}=\int-\lambda \ dt](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cint%5Cfrac%7BdN%7D%7BN%7D%3D%5Cint-%5Clambda%20%5C%20dt)
![\Rightarrow ln N= -\lambda t+C](https://tex.z-dn.net/?f=%5CRightarrow%20ln%20N%3D%20-%5Clambda%20t%2BC)
Initially N=
, when t=0
![ln N_0= -\lambda .0+C](https://tex.z-dn.net/?f=ln%20N_0%3D%20-%5Clambda%20.0%2BC)
![\Rightarrow C=ln \ N_0](https://tex.z-dn.net/?f=%5CRightarrow%20C%3Dln%20%5C%20N_0)
The equation becomes
![ln N=-\lambda t+ln N_0](https://tex.z-dn.net/?f=ln%20N%3D-%5Clambda%20t%2Bln%20N_0)
![\Rightarrow ln N-ln N_0=-\lambda t](https://tex.z-dn.net/?f=%5CRightarrow%20ln%20N-ln%20N_0%3D-%5Clambda%20t)
![\Rightarrow \ln\frac{N}{N_0}=-\lambda t](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cln%5Cfrac%7BN%7D%7BN_0%7D%3D-%5Clambda%20t)
![\Rightarrow N=N_0e^{-\lambda t}](https://tex.z-dn.net/?f=%5CRightarrow%20N%3DN_0e%5E%7B-%5Clambda%20t%7D)
N= Remaining mass after t time
= initial mass of the sample
= decay constant
Given that, every 12 years the mass of a sample of a the element is one third of the initial mass.
Here,
, t= 12 years
![\therefore \frac13N_0=N_0e^{-12\lambda }](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cfrac13N_0%3DN_0e%5E%7B-12%5Clambda%20%7D)
![\Rightarrow e^{-12\lambda }=\frac13](https://tex.z-dn.net/?f=%5CRightarrow%20e%5E%7B-12%5Clambda%20%7D%3D%5Cfrac13)
[
]
[
and
]
![\Rightarrow\lambda }=\frac{ ln 3}{12}](https://tex.z-dn.net/?f=%5CRightarrow%5Clambda%20%7D%3D%5Cfrac%7B%20ln%203%7D%7B12%7D)
The equation becomes
![\therefore N=N_0e^{-\frac{ln3}{12} t}](https://tex.z-dn.net/?f=%5Ctherefore%20N%3DN_0e%5E%7B-%5Cfrac%7Bln3%7D%7B12%7D%20t%7D)
Given that, the initial amount
and t =17
![\therefore N=100e^{-\frac{ln3}{12} 17}](https://tex.z-dn.net/?f=%5Ctherefore%20N%3D100e%5E%7B-%5Cfrac%7Bln3%7D%7B12%7D%2017%7D)
gram
Therefore 21.09 gram of the element remains after 17 years.