Answer:
c
Step-by-step explanation:
Answer:
see the attachment
Step-by-step explanation:
We assume that the question is interested in the probability that a randomly chosen class is a Friday class with a lab experiment (2/15). That is somewhat different from the probability that a lab experiment is conducted on a Friday (2/3).
Based on our assumption, we want to create a simulation that includes a 1/5 chance of the day being a Friday, along with a 2/3 chance that the class has a lab experiment on whatever day it is.
That simulation can consist of choosing 1 of 5 differently-colored marbles, and rolling a 6-sided die with 2/3 of the numbers being designated as representing a lab-experiment day. (The marble must be replaced and the marbles stirred for the next trial.) For our purpose, we can designate the yellow marble as "Friday", and numbers greater than 2 as "lab-experiment".
The simulation of 70 different choices of a random class is shown in the attachment.
_____
<em>Comment on the question</em>
IMO, the use of <em>70 trials</em> is coincidentally the same number as the first <em>70 days</em> of school. The calendar is deterministic, so there will be exactly 14 Fridays in that period. If, in 70 draws, you get 16 yellow marbles, you cannot say, "the probability of a Friday is 16/70." You need to be very careful to properly state the question you're trying to answer.
First rewrite it like this
1. y=5/4x
Then, make X the subject
2.4x=5/y
x=(5/y)÷4
3. Once done, simply replace x with h(x)^-1 and y with x
h(x)^-1= (5/x)÷4
Sorry I'm not very good at rearranging formula but hope this helps :)
Do you want to solve for x and y?
What is the objective?
The slopes of the original function y = |x| are m = 1 and m = -1 (m is the variable used to represent slope).
when you add a coefficient (number) in front of |x|, it will either make the slopes steeper or more flat. the larger the value of the coefficient, the steeper the slope will be (vice versa for a coefficient smaller than 1, which would make the slope more flat than the parent(original) function).
because these are absolute value functions, they will have two slopes. one slope for the end going up from left to right, and one for the end going down from left to right. this means that one slope must be positive and the other slope must be negative for each function.
with this in mind, the slopes of y = 2|x| are m = 2 and m = -2. the coefficient of 2 narrows the function by a factor of 2 (it is twice as narrow as the parent function). the same rules apply to y = 4|x| with the slopes of this function as m = -4 and m = 4 (it is 4 times narrower than the parent function).
with the fraction coefficients, the function is being widened. therefore, the slopes of y = 1/2 |x| are m = -1/2 and m = 1/2. the slopes of y = 1/5 |x| are m = -1/5 and m = 1/5.