Answer:
b. it has the same centripetal acceleration as car A.
Explanation:
According to the question, the data provided is as follows
Constant speed of car A = 20 m/s
Constant tangential acceleration until its speed is 40 m/s
Based on the above information, the true statement is the same centripetal acceleration as car A because
As we know that
Centripetal acceleration is

where,
= velocity
r = radius of the path
Now if both car A and car B moving in the same or identical circular path having the same velocity so in this case there is the same centripetal acceleration for that particular time
hence, the second option is correct
The force between two charges is proportional to the product of the charges.
If only one of the charges is reduced by a factor of 3, then the force is reduced by a factor of 3.
If both charges are reduced by a factor of 3, then the force is reduced by a factor of 9.
Answer: v= 160ft/s
a=32ft/s^2 constant
Explanation:
s(t)=400-16t^2 derivative of position is velocity v(t) and derivative of velocity is acceleration a(t) so let s(t)=0 to find the time of flight to reach the ground and take the two derivatives and use the time found and solve. Also acceleration is a constant as it’s gravity.
0=400-16t^2
400=16t^2
25=t^2
t=5s
ds/dt=v(t)=0-32t
dv/dt=a(t)=-32 constant(gravity)
v(t)=-32(5s)= -160ft/s negative sign is only showing direction
Vector quantities are always defined by magnitude and its direction.
Here, to define number of coins in a piggy bank, we don't need direction. Hence it is a scalar quantity.
If the object sinks, then it must be heavier than the weight of the water
it displaces ... heavier than the buoyant force acting on it.
If the buoyant force were equal or greater than the object's weight, then
the object would rise to the surface in water.