1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
11

The Assignment: A fixed quantity of an ideal gas (R 0.28 kJ/kgK; Cv-0.71kJ/kgK) is expanded from an initial condition of 35 bar,

500°C, 0.1m, to a final state of1.3mand 20C using a reversible polytropic process. Calculate: (i) the index of expansion; (ii) the change in internal energy; (ii)the amount of heat transferred to or from the gas. Show all your working clearly-and legibly if you're handwriting your submission.
Physics
1 answer:
Nikolay [14]3 years ago
7 0

Answer:

Index of expansion: 4.93

Δu = -340.8 kJ/kg

q = 232.2 kJ/kg

Explanation:

The index of expansion is the relationship of pressures:

pi/pf

The ideal gas equation:

p1*v1/T1 = p2*v2/T2

p2 = p1*v1*T2/(T2*v2)

500 C = 773 K

20 C = 293 K

p2 = 35*0.1*773/(293*1.3) = 7.1 bar

The index of expansion then is 35/7.1 = 4.93

The variation of specific internal energy is:

Δu = Cv * Δt

Δu = 0.71 * (20 - 500) = -340.8 kJ/kg

The first law of thermodynamics

q = l + Δu

The work will be the expansion work

l = p2*v2 - p1*v1

35 bar = 3500000 Pa

7.1 bar = 710000 Pa

q = p2*v2 - p1*v1 + Δu

q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg

You might be interested in
Cardiovascular exercise can
UkoKoshka [18]
Can <span>get your heart rate up and increases blood circulation throughout the body.</span>
3 0
3 years ago
Read 2 more answers
What are the principles of electrodynamic​
Sveta_85 [38]

Answer:

the branch of mechanics concerned with the interaction of electric currents with magnetic fields or with other electric currents.

Explanation:

3 0
3 years ago
Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o
Harman [31]

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

6 0
3 years ago
Which of the following examples illustrates static friction in action?
lilavasa [31]
I think its d. but im not sure
3 0
3 years ago
Read 2 more answers
What is the maximum of the sinusoidal function?.
professor190 [17]
The max is the largest it could get so ( ,0)
8 0
3 years ago
Other questions:
  • The distribution of ________ across the globe provides the primary indicator of boundaries between all tectonic plates.
    12·1 answer
  • Imagine tying a string to a ball and twirling it around you. How is this similar to the moon orbiting Earth? In this example, wh
    12·1 answer
  • Two 20 ohm resistors are connected in parallel and two 10 ohm resistors are connected in parallel. If these two combinations are
    8·1 answer
  • The concrete slab of a basement is 11 m long, 8 m wide, and 0.20 m thick. During the winter, temperatures are nominally 17°C and
    8·1 answer
  • Exercising with a friend or partner will enhance your safety. true or false
    15·2 answers
  • A ball dropped from rest falls freely until it hits the ground with a speed pf 20 m/s. The time during with the ball is in free
    11·1 answer
  • Simple pendulum, is show in several states In case A the mass is travelling back down to the bottom and is in between the bottom
    14·1 answer
  • The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straig
    6·1 answer
  • How do you know if you have all the forces needed for a FBD?
    5·1 answer
  • Atoms of an element can have more than 1 mass number but only one atomic number, Why?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!