Answer:
Blood
Explanation:
All the mentioned option will yield the same DNA for the suspect but blood, besides the DNA also contain further information that can be matched to the victim like blood group, genotype, some antibodies present and even traces of substances and disease.
<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)
<span>We know , E = kQ/r^2 where q = charge and r is separation between point and point charge.
Now, At P, E= kQ/r^2
Since, Q can't be changed, we can do that by varying r
2E = 2kq/r^2
2E = kq/ (r/ sqrt2)^2
Hence, if we bring Q closer such that distance between P and Q becomes r/ sqrt 2, E will get doubled.</span>