Answer:
The focal lenth (F) =+10.0cm
Explanation:
The formular for combined focal length (F) is given as;

In this question,
F1 = 20cm
F2 = -30cm
Plugging the values into the formuar above,

![1/f = 0.05 - 0.033[tex]1/f = -0.017f = [tex]1/ -0.017](https://tex.z-dn.net/?f=1%2Ff%20%3D%200.05%20-%200.033%3C%2Fp%3E%3Cp%3E%5Btex%5D1%2Ff%20%3D%20-0.017%3C%2Fp%3E%3Cp%3Ef%20%3D%20%5Btex%5D1%2F%20-0.017)
f = 58.82cm
i.e. the combination behaves as a converging lens (because of the postive sign) of focal length 58.82cm .
So first things first its c. because when two plates collide it causes a earthquake so u can rule those out and of course no not volcano so that's it u only have c left as your answer choice.
:/
Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






Newton's subsequent law expresses that power is corresponding to what exactly is needed for an object of consistent mass to change its speed. This is equivalent to that item's mass increased by its speed increase.
We use Newtons, kilograms, and meters each second squared as our default units, albeit any proper units for mass (grams, ounces, and so forth) or speed (miles each hour out of every second, millimeters per second², and so on) could unquestionably be utilized also - the estimation is the equivalent notwithstanding.
Hence, the appropriate answer will be 399,532.
Net Force = 399532