Answer:
(A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.
Explanation:
Given that,
Voltage = 8.2 V
Inductor = 38 mH
Resistance = 150 Ω
Time t = 0.110 ms
The battery has negligible internal resistance, so that the total resistance in the circuit is 150 ohms. Then use this equation for current at time t in terms of inductance
We need to calculate the current
Using formula of current

Put the value into the formula



(B). We need to calculate the store energy in the inductor
Using formula of energy

Put the value into the formula


{tex]E=7.04\ \mu J[/tex]
Hence, (A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
The temperature will be the pressure of 130 ka
Since static friction is the minimum force required to just start the motion of a stationary object.
Here if we need to start an object from rest then we required F = 700 N
So for the first part of the above problem Force will be F = 700 N
Now if the box is already moving then we will have to use kinetic friction force between box and floor
now we can write the equation of net force as

here



now we will have

