1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
1 year ago
13

Explain why the rocket can move at constant speed in outer space.

Physics
2 answers:
iren [92.7K]1 year ago
4 0

Answer:

When the rocket's engines are fired up, the force of gravity is disturbed, and the rocket takes off in the air. Later, as the rocket's fuel runs out, it slows down, comes to a halt, and eventually plummets to Earth's surface. Forces can affect objects in space as well. Spaceships are constantly in motion while traversing the solar system.

Explanation:

Please read!

disa [49]1 year ago
3 0

Answer:

Explanation:

The rocket works because of the law of conservation of linear momentum. The law of conservation of linear momentum is very important in physics. Momentum is defined as the mass of an object times its velocity.

You might be interested in
_____ have played a major role in altering Earth's atmospheric composition over time.A. TsunamisB. VolcanoesC. HurricanesD. Eart
sammy [17]
I believe the answer is valcanos because they release sulfur in to the air and other chemicals so it willl affect the anispher
4 0
3 years ago
Read 2 more answers
A small object of mass 3.82 g and charge -16.5 µC is suspended motionless above the ground when immersed in a uniform electric f
horrorfan [7]

Answer:

2271.16N/C  upward

Explanation:

The diagram well illustrate all the forces acting on the mass. The weight is acting downward and the force is acting upward in other to balance the weight.since the question says it is motionless, then indeed the forces are balanced.

First we determine the downward weight using

W=mg\\g=9.81m/s^{2}

Hence for a mass of 3.82g 0r 0.00382kg we have the weight to be

W=0.00382kg*9.81m/s^{2}

W=0.0375N

To calculate the electric field,

E=f/q\\E=0.0375/16.5*10^{-6} \\E=2271.16N/C

Since the charge on the mass is negative, in order to generate upward force, there must be a like charge below it that is  repelling it, Hebce we can conclude that the electric field lines are upward.

Hence the magnitude of the electric force is 2271.16N/C and the direction is upward

4 0
3 years ago
The tip of the second hand of a clock moves in a circle of 20 cm circumference. In one minute the hand makes a complete revoluti
Cerrena [4.2K]

Answer:

v_{avg} = 0

Explanation:

As we know that average velocity is defined as the ratio of total displacement of the object and its time interval.

so here we can say

v_{avg} = \frac{displacement}{time}

now we know that in one complete revolution the total displacement of the tip of the seconds hand is zero

because it will have same position after one complete revolution from where it starts

so here we can say that the average velocity will be zero

v_{avg} = 0

7 0
3 years ago
A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A
Sphinxa [80]

Answer:

Density of 127 I = \rm 1.79\times 10^{14}\ g/cm^3.

Also, \rm Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

Explanation:

Given, the radius of a nucleus is given as

\rm r=kA^{1/3}.

where,

  • \rm k = 1.3\times 10^{-13} cm.
  • A is the mass number of the nucleus.

The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

\rm \rho = \dfrac{M}{V}=\dfrac{M}{\dfrac 43 \pi r^3}=\dfrac{M}{\dfrac 43 \pi (kA^{1/3})^3}=\dfrac{M}{\dfrac 43 \pi k^3A}.

For the nucleus 127 I,

Mass, M = \rm 2.1\times 10^{-22}\ g.

Mass number, A = 127.

Therefore, the density of the 127 I nucleus is given by

\rm \rho = \dfrac{2.1\times 10^{-22}\ g}{\dfrac 43 \times \pi \times (1.3\times 10^{-13})^3\times 127}=1.79\times 10^{14}\ g/cm^3.

On comparing with the density of the solid iodine,

\rm \dfrac{Density\ of\ ^{127}I}{Density\ of\ the\ solid\ iodine}=\dfrac{1.79\times 10^{14}\ g/cm^3}{4.93\ g/cm^3}=3.63\times 10^{13}.\\\\\Rightarrow Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

7 0
3 years ago
A person carries a box of 100 kg. What is the weight of the box? (g= 9.8 m/s2)​
aliina [53]

Answer:

980 newton

Explanation:

100×9.8 = 980

8 0
2 years ago
Other questions:
  • A 40-kg rock is dropped from an elevation of 10 m. What is the velocity of the rock when it is 5-m from the ground?
    8·1 answer
  • What are the four factors that influence how fast the water will flow
    10·1 answer
  • Describe what happens when you jump from a small boat onto a dock from the perspective of the 3rd Law.
    7·1 answer
  • How long will it take to travel 200 km traveling 10 m/s ?
    11·1 answer
  • Two marbles, one twice as massive as the other, are dropped from the same height. When they strike the ground, how does the kine
    7·1 answer
  • tourist travels 1500 miles using two planes. The second plane averages 50 miles per hour faster than the first plane. The touris
    7·1 answer
  • A student wishes to conduct an investigation on heat transfer that demonstrates convection, Which
    14·1 answer
  • A circus performer wants to land in a net 5 meters to the right of where she will let go of the trapeze. If she is 10 meters abo
    13·1 answer
  • What is the term for the matter through which a mechanical wave travels?
    7·1 answer
  • 4) For the situation pictured below, F1 = 20.0 N east and F2 = 30.0 N west ,
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!