Answer:
900
Step-by-step explanation:
(n-2)*180
5*180=900
This is an exponential equation. We will solve in the following way. I do not have special symbols, functions and factors, so I work in this way
2 on (2x) - 5 2 on x + 4=0 =>. (2 on x)2 - 5 2 on x + 4=0 We will replace expression ( 2 on x) with variable t => 2 on x=t =. t2-5t+4=0 => This is quadratic equation and I solve this in the folowing way => t2-4t-t+4=0 => t(t-4) - (t-4)=0 => (t-4) (t-1)=0 => we conclude t-4=0 or t-1=0 => t'=4 and t"=1 now we will return t' => 2 on x' = 4 => 2 on x' = 2 on 2 => x'=2 we do the same with t" => 2 on x" = 1 => 2 on x' = 2 on 0 => x" = 0 ( we know that every number on 0 gives 1). Check 1: 2 on (2*2)-5*2 on 2 +4=0 => 2 on 4 - 5 * 4+4=0 => 16-20+4=0 =. 0=0 Identity proving solution.
Check 2: 2 on (2*0) - 5* 2 on 0 + 4=0 => 2 on 0 - 5 * 1 + 4=0 =>
1-5+4=0 => 0=0 Identity provin solution.
Answer:
p=1/8 q=3/4
Step-by-step explanation:
-2p+7q=5
-6p+35q=51/2
cancel out a variable
(-5)(-2p+7q=5)
-6p+35q=51/2
10p-35q=-25
-6p+35q=51/2 =
4p=1/2
4p/4=1/2 /4
p=1/8
substitute p=1/8 into one of the equation to find q
-2p+7q=5
-2(1/8)+7q=5
-1/4+7q=5
7q=5+1/4
7q=21/4
q= 21/4 /7
q=3/4
Answer:

Step-by-step explanation:
Consider the revenue function given by
. We want to find the values of each of the variables such that the gradient( i.e the first partial derivatives of the function) is 0. Then, we have the following (the explicit calculations of both derivatives are omitted).


From the first equation, we get,
.If we replace that in the second equation, we get

From where we get that
. If we replace that in the first equation, we get

So, the critical point is
. We must check that it is a maximum. To do so, we will use the Hessian criteria. To do so, we must calculate the second derivatives and the crossed derivatives and check if the criteria is fulfilled in order for it to be a maximum. We get that


We have the following matrix,
.
Recall that the Hessian criteria says that, for the point to be a maximum, the determinant of the whole matrix should be positive and the element of the matrix that is in the upper left corner should be negative. Note that the determinant of the matrix is
and that -10<0. Hence, the criteria is fulfilled and the critical point is a maximum
one apple left you subtract 5 from 4 and get 1