Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA =
/ ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
When you compare all organisms around us, even the smallest ones, you see that they have Life; You could even see this as a trend of some sort.
<h2>Question:</h2>
In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?
Answer:
9.1Ω
Explanation:
The circuit diagram has been attached to this response.
(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

=>
------------(i)
From the question;
R1 = 3Ω,
R2 = 7Ω
Substitute these values into equation (i) as follows;


Ω
(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.
Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e
R = Rₓ + R3
Rₓ = 2.1Ω
R3 = 7Ω
=> R = 2.1Ω + 7Ω = 9.1Ω
Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω
Answer and Explanation:
The charge on the conductive sphere spreads out non-uniformly over the surface of the sphere.
Normally, the charge on such spherical surface stay on this surface uniformly, but the presence of a voltage source tampers with that dynamic.
That is because it is impossible to create a law for the behavior of every single different gas, so creating laws for an ideal gas helps us understand the basic nature of gasses which might or might not differ slightly or a lot. By understanding how an ideal gas works, we can understand how a normal gas works.