Answer:
The space cadet that weighs 800 N on Earth will weigh 1,600 N on the exoplanet
Explanation:
The given parameters are;
The mass of the exoplanet = 1/2×The mass of the Earth, M = 1/2 × M
The radius of the exoplanet = 50% of the radius of the Earth = 1/2 × The Earth's radius, R = 50/100 × R = 1/2 × R
The weight of the cadet on Earth = 800 N

Therefore, for the weight of the cadet on the exoplanet, W₁, we have;

The weight of a space cadet on the exoplanet, that weighs 800 N on Earth = 1,600 N.
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
I'm assuming the question is what is the robin's speed relative to to the ground...
Create an equation that describes its relative motion.
rVg = rVa + aVg
Substitute values.
rVg = 12 m/s [N] + 6.8 m/s [E]
Use vector addition.
| rVg | = √ | rVa |² + | aVg |²
| rVg | = √ 144 m²/s² + 46.24 m²/s²
| rVg | = √ 19<u>0</u>.24 m²/s²
| rVg | = 1<u>3</u>.78 m/s
Find direction.
tanФ = aVg / rVa
tanФ = 6.8 m/s / 12 m/s
Ф = 29°
Therefore, the velocity of the robin relative to the ground is 14 m/s [N29°E]
Answer:
18 N/C
Explanation:
Given that:
Electric field constant, k = 9*10^9 N/c
Distance, r = 10^-8 m
Dipole moment, p = 10^-33
Using the relation for electric field due to dipole :
E = [2KP / r³]
E = (2 * (9*10^9) * 10^-33) ÷ (10^-8)^3
E = (18 * 10^9 * 10^-33) ÷ 10^-24
E = [18 * 10^(9-33)] ÷ 10^-24
E = (18 * 10^-24) / 10^-24
E = 18 * 10^-24+24
E = 18 * 10^0
E = 18 N/C