Answer:
Gravitational energy and kinetic energy
T is in seconds (s)
<span>2pi is dimensionless </span>
<span>L is in meters (m) </span>
<span>g is in meters per second squared (m/s^2) </span>
<span>so you can write the equation for the period of the simple pendulum in its units... </span>
<span>s=sqrt(m/(m/s^2)) </span>
<span>simplify</span>
<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>
<span>s=sqrt(s^2) </span>
<span>s=s </span>
<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
Answer : The specific heat capacity of the alloy 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of alloy = ?
= specific heat of water = 
= mass of alloy = 21.6 g
= mass of water = 50.0 g
= final temperature of system = 
= initial temperature of alloy = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat capacity of the alloy 
Answer:

Explanation:
When heat energy is supplied to an object, the temperature of the object increases according to the equation:

where
Q is the heat supplied
C is the heat capacity of the object
is the change in temperature
In this problem we have:
is the energy supplied
is the change in temperature of the object
Therefore, the heat capacity of the object is:

<span>The difference between a internal combustion engine and a diesel engine is the ignition, But a Diesel engine is an internal combustion engine. The both burn internal one uses compression to fire the other uses ignition system.</span>