1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pachacha [2.7K]
3 years ago
14

aren wants to advertise how many chocolate chips are in each Big Chip cookie at her bakery. She randomly selects a sample of 51

cookies and finds that the number of chocolate chips per cookie in the sample has a mean of 9.1 and a standard deviation of 2.2. What is the 95% confidence interval for the number of chocolate chips per cookie for Big Chip cookies
Mathematics
1 answer:
torisob [31]3 years ago
8 0

Answer:

The 95% confidence interval for the number of chocolate chips per cookie for Big Chip cookies is between 4.68 and 13.52.

Step-by-step explanation:

We have the standard deviation of the sample, so we use the students' t-distribution to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 51 - 1 = 50

95% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 50 degrees of freedom(y-axis) and a confidence level of 1 - \frac{1 - 0.95}{2} = 0.975([tex]t_{975}). So we have T = 2.01

The margin of error is:

M = T*s = 2.01*2.2 = 4.42

In which s is the standard deviation of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 9.1 - 4.42 = 4.68

The upper end of the interval is the sample mean added to M. So it is 9.1 + 4.42 = 13.52

The 95% confidence interval for the number of chocolate chips per cookie for Big Chip cookies is between 4.68 and 13.52.

You might be interested in
points a,b and c are collinear on AC, and AB:BC=3/4. A is located at (x,y), B is located at (4,1), and c is located at (12,5). w
olga_2 [115]
We have two unknowns: x and y. Now, we have to formulate 2 equations. The first would come from the use of the given ratio:

We use the distance formula to find the distance between coordinates:

3/4 = √[(x-4)²+(y-1)²] / √[(4-12)²+(1-5)²]
√[(x-4)²+(y-1)²]  = 3√5
(x-4)²+(y-1)² = 45
x² - 8x + 16 + y² - 2y + 1 = 45
x² - 8x + y² - 2y = 28  --> eqn 1

The second equation must come from the equation of a line:
y = mx +b
m = (5-1)/(12-4) = 1/2

Substitute y=5 and x=12 for point (12,5)
5 = (1/2)(12) + b
b = -1

So, the second equation is

y = 1/2x -1 or x = 2 + 2y --> eqn 2

Solving the equations simultaneously:
(2 + 2y)² - 8(2 + 2y) + y² - 2y = 28 
Solving for y, 
y = -2
x = 2+2(-2) = -2

Therefore, the coordinates of point A is (-2,-2).

5 0
3 years ago
Read 2 more answers
What is slope between the points (-5,7) and (4,-8)?
WINSTONCH [101]
The slope can sometimes be called the gradient, and the equation for the gradient is (y2 - y1)/(x2 - x1). So therefore, you'd do: (-8 - 7)/(4 - -5) which is (-15)/9) which is -1 2/3 or -1.6 (recurring), which is your answer. I hope this helps! Let me know if I've confused you :)
3 0
3 years ago
Use the following graph of the function f(x) = −3x4 − x3 + 3x2 + x + 3 to answer this question: What is the average rate of chan
Alinara [238K]

the average rate of change is just the slope from (0,f(0)) to (1,f(1))

find f(0) and f(1)

f(0)=-3(0)^4-(0)^3+3(0)^2+0+3=3

f(1)=-3(1)^4-(1)^3+3(1)^2+1+3=-3-1+3+1+3=3


slope from (0,3) to (1,3) is rise/run=(3-3)/(0-1)=0/-1

the average rate of change from x=0 to x=1 for f(x) is 0

6 0
2 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
N^2- n - 12 = (n + 3)(___)
Nat2105 [25]

Answer:

n^2 - n - 12 = (n+3)(n-4)

Step-by-step explanation:

3 times - 4 = -12 ( two numbers when multiplied = -12, when added=-1)

3 + -4 = -1

4 0
2 years ago
Other questions:
  • Which decimal is between 1.5 and 1.7?
    13·2 answers
  • How to do a double number line
    5·1 answer
  • What divides an angle into two congruent angles?
    12·2 answers
  • Which of the following is TRUE about the​ northwest-corner rule? A. All allocations are based on lowest cost B. All demand and s
    6·1 answer
  • What is the answer to 2 pounds = ounces
    12·2 answers
  • Pls, help! I really need it! THANKS!! I'm giving 15 points + BRAINLIEST
    14·1 answer
  • You can use a calculator
    14·2 answers
  • A copy machine makes 36 copies per minute. How long does it take to make 126 copies?
    11·2 answers
  • ••Don't spam please!!​
    5·2 answers
  • A bag contains: • 5 red marbles •6 blue marbles •3 green marbles •4 black marbles • 2 yellow marbles. A marble will be drawn fro
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!