Using the Empirical Rule and the Central Limit Theorem, we have that:
- About 68% of the sample mean fall with in the intervals $1.64 and $1.82.
- About 99.7% of the sample mean fall with in the intervals $1.46 and $2.
<h3>What does the Empirical Rule state?</h3>
It states that, for a normally distributed random variable:
- Approximately 68% of the measures are within 1 standard deviation of the mean.
- Approximately 95% of the measures are within 2 standard deviations of the mean.
- Approximately 99.7% of the measures are within 3 standard deviations of the mean.
<h3>What does the Central Limit Theorem state?</h3>
By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem, the standard deviation of the distribution of sample means is:

68% of the means are within 1 standard deviation of the mean, hence the bounds are:
99.7% of the means are within 3 standard deviations of the mean, hence the bounds are:
More can be learned about the Empirical Rule at brainly.com/question/24537145
#SPJ1
Answer: 
<u>Step-by-step explanation:</u>

We define the probability of a particular event occurring as:

What are the total number of possible outcomes for the rolling of two dice? The rolls - though performed at the same time - are <em>independent</em>, which means one roll has no effect on the other. There are six possible outcomes for the first die, and for <em>each </em>of those, there are six possible outcomes for the second, for a total of 6 x 6 = 36 possible rolls.
Now that we've found the number of possible outcomes, we need to find the number of <em>desired</em> outcomes. What are our desired outcomes in this problem? They are asking for all outcomes where there is <em>at least one 5 rolled</em>. It turns out, there are only 3:
(1) D1 - 5, D2 - Anything else, (2), D1 - Anything else, D2 - 5, and (3) D1 - 5, D2 - 5
So, we have

probability of rolling at least one 5.
52/8 is 6.5 which is 6.5 days 15-6.5 is 8.5 and 8.5 • 8 is 68. 68+52 is the same as 15•8 so i’m pretty sure the answer is 68
Answer:
3h²
Step-by-step explanation:
factor or breakdown 3h² : 3 * h * h
factor or breakdown 3h³ : 3 * h * h * h
Now, we can see that 3 * h * h is common so 3h² is the gcf.