Answer:
![\boxed{4x^{2} - 48x + 144}](https://tex.z-dn.net/?f=%5Cboxed%7B4x%5E%7B2%7D%20%20-%2048x%20%2B%20144%7D)
Step-by-step explanation:
Given expression:
To simplify the expression, we will use the formula (a - b)² = a² - 2ab + b².
[Where "a and b" are the first and second term in (a - b)²]
![\rightarrowtail (2x - 12)^{2}](https://tex.z-dn.net/?f=%5Crightarrowtail%20%282x%20-%2012%29%5E%7B2%7D)
In this case, the first term of (2x - 12)² is "2x" and the second term is "12".
![\rightarrowtail (2x)^{2} - 2(2x)(12) + (12)^{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{First term = a = 2x; Second term = b = 12]}](https://tex.z-dn.net/?f=%5Crightarrowtail%20%282x%29%5E%7B2%7D%20-%202%282x%29%2812%29%20%2B%20%2812%29%5E%7B2%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5B%5Csmall%5Ctext%7BFirst%20term%20%3D%20a%20%3D%202x%3B%20Second%20term%20%3D%20b%20%3D%2012%5D%7D)
Now, simplify the expression.
![\rightarrowtail (2x)^{2} - 2(2x)(12) + (12)^{2}](https://tex.z-dn.net/?f=%5Crightarrowtail%20%282x%29%5E%7B2%7D%20-%202%282x%29%2812%29%20%2B%20%2812%29%5E%7B2%7D)
![\rightarrowtail (2x)(2x) - (4x)(12) + (12)(12)](https://tex.z-dn.net/?f=%5Crightarrowtail%20%282x%29%282x%29%20-%20%284x%29%2812%29%20%2B%20%2812%29%2812%29)
![\rightarrowtail \boxed{4x^{2} - 48x + 144}](https://tex.z-dn.net/?f=%5Crightarrowtail%20%5Cboxed%7B4x%5E%7B2%7D%20%20-%2048x%20%2B%20144%7D)
The height is 5 and 1/4 then the base is 2 and 1/2
You can convert these fractions into decimals and them multiply them to get your area.
Answer:
Senior citizen tickets = $9
Student tickets = $11
Step-by-step explanation:
We begin by converting these into simultaneous linear equation;
Senior citizen tickets = a
Student tickets = b
5a + 9b = 144
14a + 6b = 192
5a = 144 - 9b
a = 144/5 - 9b/5
a = 28.8 - 1.8b
We now substitute this into the first equation
14(28.8 - 1.8b) + 6b = 192
403.2 - 25.2b +6b = 192
-19.2b = 192 - 403.2
b = -211.2/-19.2
b = 11
Put the value of b into either equation
5a + 9b = 144
5a + 9(11) = 144
5a +99 = 144
5a = 144-99
5a = 45
a = 9