Answer:
v = 7.69 x 10³ m/s = 7690 m/s
T = 5500 s = 91.67 min = 1.53 h
Explanation:
In order for the satellite to orbit the earth, the force of gravitation on satellite must be equal to the centripetal force acting on it:
where,
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Me = Mass of Earth = 5.97 x 10²⁴ kg
r = distance between the center of Earth and Satellite = Radius of Earth + Altitude = 6.371 x 10⁶ m + 0.361 x 10⁶ m = 6.732 x 10⁶ m
v = orbital speed = ?
Therefore,
<u>v = 7.69 x 10³ m/s</u>
For time period satellite completes one revolution around the earth. It means that the distance covered by satellite is equal to circumference of circle at the given altitude.
So, its orbital speed can be given as:
where,
T = Time Period of Satellite = ?
Therefore,
<u>T = 5500 s = 91.67 min = 1.53 h</u>
<span> planetary satellites vary greatly in size, from very small, to some that are larger than some planets.</span>
By striking another object that is free to move, the moving object can exert a force and cause the second object to shift its position. While the object is moving, it has the capacity for doing work. Energy means the ability to do work, so all moving things have energy by virtue of their motion.
Translation: Al golpear otro objeto que se puede mover libremente, el objeto en movimiento puede ejercer una fuerza y hacer que el segundo objeto cambie de posición. Mientras el objeto se mueve, tiene la capacidad de realizar un trabajo. Energía significa la capacidad de realizar un trabajo, por lo que todas las cosas en movimiento tienen energía en virtud de su movimiento.
Because dark line spectra result from passing white light through ionized gasses and plasmas, which is what the atmosphere of stars are made of. These frequencies are scattered by the star's atmosphere as it leaves the surface (photosphere) of the star, and don't make it to earth.