Answer:
31.905 ft/s²
Explanation:
Given that
Mass of the pilot, m = 120 lb
Weight of the pilot, w = 119 lbf
Acceleration due to gravity, g = 32.05 ft/s²
Local acceleration of gravity of found by using the relation
Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)
119 = 120 * a/32. 174
119 * 32.174 = 120a
a = 3828.706 / 120
a = 31.905 ft/s²
Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²
 
        
             
        
        
        
Answer:c-The gravitational effect when spacecraft flies close to the asteriod
Explanation:
Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.
The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.
Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.