C. Frequency is a measure of how many waves pass by in one second.
The first step that Enrique must take in order to calculate the tangential speed of the satellite is to convert the period from days to seconds.
We know that the SI unit of speed is meter per second and now, we with to obtain the tangential speed of the satellite.
Since the period is given in days, the first step is to convert the period from days to seconds.
Learn more: brainly.com/question/17638582
Answer:
(a) 
(b) 
(c) 
Explanation:
(a) According to Newton's second law, the acceleration of a body is directly proportional to the force exerted on it and inversely proportional to it's mass.

(b) According to Newton's third law, the force that the sled exerts on the girl is equal in magnitude but opposite in the direction of the force that the girl exerts on the sled:

(c) Using the kinematics equation:

For the girl, we have
and
. So:

For the sled, we have
. So:

When they meet, the final positions are the same. So, equaling (1) and (2) and solving for t:

Now, we solve (1) for 

Momentum is conserved when carts are collided on a slanting plane.
To find the answer, we need to know about the conversation of momentum.
<h3>What's the conversation of momentum?</h3>
- Conservation of linear momentum says the total momentum before the collision and after the collision remains the same.
- Mathematically, m1u1+m2u2 = m1v1+m2v2
<h3>How is the momentum conserved when collision occurs on a slanting plane?</h3>
- On a slanting plane, the velocity has two components,
- horizontal component
- horizontal component Vertical component
- So, its momentum has also similar two components.
- The momentum is conserved along horizontal direction and vertical direction separately.
Thus, we can conclude that the momentum is conserved when carts are collided on a slanting plane.
Learn more about the conversation of momentum here:
brainly.com/question/7538238
#SPJ4
Answer:
Minimum elastic modulus of fiber = 455.64 GPa
Explanation:
Contents of composite material = Epoxy and Unidirectional fibers
Elastic modulus of epoxy = 3.5 GPa
Elastic modulus of composite material = 320 GPa
Volume fraction of fiber = 70 %
Volume fraction of epoxy = 100 - 70 = 30%
Elastic modulus of composite material = 3.5 x 0.3 + Elastic modulus of fiber x 0.7 = 320
0.7 x Elastic modulus of fiber = 320 - 1.05 = 318.95
Elastic modulus of fiber = 455.64 GPa
Minimum elastic modulus of fiber = 455.64 GPa