Answer:
"1.4 mL" is the appropriate solution.
Explanation:
According to the question,
Now,
Increase in volume will be:
⇒ 
By putting the given values, we get



Stoichiometry <span>of the reaction:
</span><span>2 KClO</span>₃<span> = 2 KCl + 3 O</span>₂
↓ ↓
2 mole KClO₃ ----------> 3 mole O₂
2 mole KClO₃ ----------> ?
KClO₃ = 2 * 3 / 2
KClO₃ = 6 / 2
= 3 moles de KClO₃
hope this helps!
Answer:
0.328 atm
Explanation:
Kp is the equilibrium constant calculated based on the pressure, and it depends only on the gas substances. It will be the multiplication of partial pressures of the products raised to their coefficients divided by the multiplication of partial pressures of the reactants raised to their coefficients.
For the equation given, the stoichiometry is 1 mol of NH₃ for 1 mol of H₂S, so they will have the same partial pressure in equilibrium, let's call it p. So:
Kp = pxp
0.108 = p²
p = √0.108
p = 0.328 atm, which is the partial pressure of the ammonia.
Answer:
0.7457 g is the mass of the helium gas.
Explanation:
Given:
Pressure = 3.04 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
3.04 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
<u>⇒n = 0.1863 moles</u>
Molar mass of helium = 4.0026 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>0.7457 g is the mass of the helium gas. </u>
5 g is bigger than 43 mg.
I hope this is right, I apologize if I'm wrong.