This would be the coffee machine in the break room. Because the chloroplast creates energy from the sun. and this creates energy from coffee beans to give to the employees
Answer:
A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.
Step by Step Explanation?
Boyle's law states that in constant temperature the variation volume of gas is inversely proportional to the applied pressure.
The formula is,
P₁ x V₁ = P₂ × V₂
Where,
P₁ is initial pressure = 1 atm
P2 is final pressure = ? (Not Known)
V₁ is initial volume = 10 L
V₂ is final volume = 15 L
Now put the values in the formula,
\begin{gathered}\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67\end{gathered]
Therefore, the answer is 0.67 atm.
Answer:
q = -6464.9 kJ
Explanation:
We are given that the heat of combustion is ∆H° = −394 kJ per mol of carbon.Therefore what we need to do is calculate how many moles of C are in the lump of coal by finding its mass since the density is given.
vol = 5.6 cm x 5.1 cm x 4.6 cm = 131.38 cm³
m = d x v = 1.5 g/cm³ x 131.38 cm³ = 197.06 g
mol C = m/MW = 197.06 g/ 12.01g/mol = 16.41 mol
q = −394 kJ /mol C x 16.41 mol C = -6464.9 kJ
Carbon(C):
number of moles= mass/molar mass(Mr)
=65.5/12
=5.5 moles
Hydrogen(H):
number of moles=mass/molar mass (Mr)
=5.5/1
=5.5 moles
Oxygen (O):
number of moles = mass/molar mass (Mr)
=29.0/16
=1.8 moles
EF= lowest number of moles over each of the elements
So,
C= 5.5/1.8 = 3
H= 5.5/1.8 = 3
O= 1.8/1.8 = 1
Therefore Emperical formula= C3H3O
I believe the statement above is true. The stronger the wind, the larger the particles it erodes<span>. The stronger the wind, the larger the particles that are carried away.
</span>