Substitute <em>x</em> = 3 - 2 cos(<em>θ</em>) and d<em>x</em> = 2 sin(<em>θ</em>) d<em>θ</em> (where "sin" = "sen"). So we have
∫ sin(<em>θ</em>) / (3 - 2 cos(<em>θ</em>)) d<em>θ</em> = 1/2 ∫ 1/<em>x</em> d<em>x</em>
= 1/2 ln|<em>x</em>| + <em>C</em>
= 1/2 ln(3 - 2 cos(<em>θ</em>)) + <em>C</em>
(We can remove the absolute value because -1 ≤ cos(<em>θ</em>) ≤ 1, so 1 ≤ 3 - 2 cos(<em>θ</em>) ≤ 5, and |<em>x</em>| = <em>x</em> when <em>x</em> ≥ 0.)
Step-by-step explanation:
angle 7 is corresponding to angle 1.
Answer:
X=12
Step-by-step explanation:
Khan Academy
Answer:
We start with the equation:
A: 3*(x + 2) = 18
And we want to construct equation B:
B: X + 2 = 18
where I suppose that X is different than x.
Because in both equations the right side is the same thing, then the left side also should be the same thing, this means that:
3*(x + 2) = X + 2
Now we can isolate the variable x.
(x + 2) = (X + 2)/3
x = (X + 2)/3 - 2
Then we need to replace x by (X + 2)/3 - 2 in equation A, and we will get equation B.
Let's do it:
A: 3*(x + 2) = 18
Now we can replace x by = (X + 2)/3 - 2
3*( (X + 2)/3 - 2 + 2) = 18
3*( (X + 2)/3 ) = 18
3*(X + 2)/3 = 18
(X + 2) = 18
Which is equation B.