1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedaia [141]
4 years ago
15

What is a motor and were it goes in. A car

Engineering
1 answer:
Arlecino [84]4 years ago
7 0

Answer:

mo·tor

noun

a machine, especially one powered by electricity or internal combustion, that supplies motive power for a vehicle or for some other device with moving parts.

The motors are normally located near the centerline of the underside of the car, parallel to the axles and transverse to the long axis of the car: They're highlighted in red in that photograph of the underside of a car.

You might be interested in
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage
ivolga24 [154]

Answer:

a. 46.15%

b. 261.73 kg/s

c. 54.79 kW/K

Explanation:

a. State 1

The parameters given are;

T₁ = 560°C

P₁ = 12 MPa = 120 bar

Therefore;

h₁ = 3507.41 kJ/kg,  s₁ = 6.6864 kJ/(kg·K)

State 2

p₂ = 1 MPa = 10 bar

s₂ = s₁ = 6.6864 kJ/(kg·K)

h₂ = (6.6864 - 6.6426)÷(6.6955 - 6.6426)×(2828.27 - 2803.52) + 2803.52

= (0.0438 ÷ 0.0529) × 24.75 = 2824.01 kJ/kg

State 3

p₃ = 6 kPa = 0.06 bar

s₃ = s₁ = 6.6864 kJ/(kg·K)

sg = 8.3291 kJ/(kg·K)

sf = 0.52087 kJ/(kg·K)

x = s₃/sfg = (6.6864- 0.52087)/(8.3291  - 0.52087) = 0.7896

(h₃ - 151.494)/2415.17 = 0.7896

∴ h₃ = 2058.56 kJ/kg

State 4

Saturated liquid state

p₄ = 0.06 bar= 6000 Pa, h₄ = 151.494 kJ/kg, s₄ = 0.52087 kJ/(kg·K)

State 5

Open feed-water heater

p₅ = p₂ =  1 MPa = 10 bar = 1000000 Pa

s₄ = s₅ = 0.52087 kJ/(kg·K)

h₅ = h₄ + work done by the pump on the saturated liquid

∴ h₅ = h₄ + v₄ × (p₅ - p₄)

h₅ = 151.494 + 0.00100645 × (1000000 - 6000)/1000 = 152.4944113 kJ/kg

Step 6

Saturated liquid state

p₆ = 1 MPa = 10 bar

h₆ = 762.683 kJ/kg

s₆ = 2.1384 kJ/(kg·K)

v₆ = 0.00112723 m³/kg

Step 7

p₇ = p₁ = 12 MPa = 120 bar

s₇ = s₆ = 2.1384 kJ/(kg·K)

h₇ = h₆ + v₆ × (p₇ - p₆)

h₇ = 762.683  + 0.00112723 * (12 - 1) * 1000 = 775.08253 kJ/kg

The fraction of flow extracted at the second stage, y, is given as follows

y = \dfrac{762.683 - 152.4944113 }{2824.01 - 152.4944113 } = 0.2284

The turbine control volume is given as follows;

\dfrac{\dot{W_t}}{\dot{m_{1}}} = \left (h_{1} - h_{2}  \right ) + \left (1 - y  \right )\left (h_{2} - h_{3}  \right )

= (3507.41  - 2824.01) + (1 - 0.22840)*(2824.01 - 2058.56) = 1274.02122 kJ/kg

For the pumps, we have;

\dfrac{\dot{W_p}}{\dot{m_{1}}} = \left (h_{7} - h_{6}  \right ) + \left (1 - y  \right )\left (h_{5} - h_{4}  \right )

= (775.08253 - 762.683) + (1 - 0.22840)*(152.4944113 -  151.494)

= 13.17 kJ/kg

For the working fluid that flows through the steam generator, we have;

\dfrac{\dot{Q_{in}}}{\dot{m_{1}}} = \left (h_{1} - h_{7}  \right )

= 3507.41 - 775.08253 = 2732.32747 kJ/kg

The thermal efficiency, η, is given as follows;

\eta = \dfrac{\dfrac{\dot{W_t}}{\dot{m_{1}}} -\dfrac{\dot{W_p}}{\dot{m_{1}}}}{\dfrac{\dot{Q_{in}}}{\dot{m_{1}}}}

η = (1274.02122 - 13.17)/2732.32747 = 0.4615 which is 46.15%

(762.683 - 152.4944113)/(2824.01 - 152.4944113)

b. The mass flow rate, \dot{m_{1}}, into the first turbine stage is given as follows;

\dot{m_{1}} = \dfrac{\dot{W_{cycle}}}{\dfrac{\dot{W_t}}{\dot{m_{1}}} -\dfrac{\dot{W_p}}{\dot{m_{1}}}}

\dot{m_{1}} = 330 *1000/(1274.02122 - 13.17) = 261.73 kg/s

c. From the entropy rate balance of the steady state form, we have;

\dot{\sigma }_{cv} = \sum_{e}^{}\dot{m}_{e}s_{e} - \sum_{i}^{}\dot{m}_{i}s_{i} = \dot{m}_{6}s_{6} - \dot{m}_{2}s_{2} - \dot{m}_{5}s_{5}

\dot{\sigma }_{cv} = \dot{m}_{6} \left [s_{6} - ys_{2} - (1 - y)s_{5}  \right ]

= 261.73 * (2.1384 - 0.2284*6.6864 - (1 - 0.2284)*0.52087 = 54.79 kW/K

4 0
3 years ago
Suppose we are managing a consulting team of expert computer hackers, and each week we have to choose a job for them to undertak
lina2011 [118]

Answer:

if number == 1

  then

  tempSolution= max(l[number],h[number])

else if number == 2 then

  tempSolution= max(optimalPlan(1, l, h)+ l[2], h[2])

else

  tempSolution= max(optimalPlan(number − 1, l, h) + l[number], optimalPlan(number − 2, l, h) + h[number])

end if

return Value

FindOptimalValue(number, l, h)

for itterator = 1 ! number do

  tempSolution[itterator] = 0

end for

for itterator = 1 ! number do

  if itterator == 1 then

      tempSolution[itterator] max(l[itterator], h[itterator])

  else if itterator == 2 then

      tempSolution[itterator] max(tempSolution[1] + l[2], h[2])

  else

      tempSolution[itterator] max(tempSolution[itterator − 1] + l[itterator], tempSolution[itterator − 2] + h[itterator])

  end if

end for

return Value[number]

OPtimalPlan(number, l, h, Value)

for itterator = 1 ! number do

  WeekVal[itterator]

end for

if tempSolution[number] − l[number] = tempSolution[number − 1] then

  WeekVal[number] ”Low stress”

  OPtimalPlan(number-1, l, h, Value)

else

  WeekVal[number] ”High stress”

  OPtimalPlan(number-2, l, h, Value)

end if

return WeekVal

7 0
3 years ago
Which term refers to the impurities found during the welding process ?
Aleks04 [339]

Answer:

idk

Explanation:

idk

6 0
4 years ago
The vertical force P acts on the bottom of the plate having a negligible weight. Determine the shortest distance d to the edge o
Greeley [361]

Answer:

The shortest distance d to the edge of the plate is 66.67 mm

Concepts and reason

Moment of a force:

Moment of a force refers to the propensity of the force to cause rotation on the body it acts upon. The magnitude of the moment can be determined from the product of force’s magnitude and the perpendicular distance to the force.

Moment(M) = Force(F)×distance(d)

Moment of inertia ( I )

It is the product of area and the square of the moment arm for a section about a reference. It is also called as second moment of inertia.

First prepare the free body diagram of sectioned plate and apply moment equilibrium condition and also obtain area and moment of inertia of rectangular cross section. Finally, calculate the shortest distance using the formula of compressive stress (σ) in combination of axial and bending stress

Solution and Explanation:

[Find the given attachments]

6 0
4 years ago
What do means by tenes​
Nikitich [7]
In Greek mythology, Tenes was the eponymous hero of the island of Tenedos. He was the son either of Apollo or of King Cycnus of Colonae by Proclia, daughter or granddaughter of Laomedon. ... The natives of the island pronounced Tenes their king.
8 0
4 years ago
Other questions:
  • What are the three most common types of relearn procedures?
    11·1 answer
  • Mile markers appear as green signs.
    6·1 answer
  • The C language allows developers to pass functions as parameters to other functions. Provide a declaration for a function named
    13·1 answer
  • Convert 86.1 cm to inches​
    7·1 answer
  • Visual aids are useful for all of the following reasons except
    11·1 answer
  • Problem 3. The uniform beam is supported by two rods AB and CD that have cross-sectional areas of 10 mm2 and 15mm2, respectively
    12·1 answer
  • Why do engineers play a variety of roles in the engineering process?
    6·1 answer
  • Consider a 6-bit cyclic redundancy check (CRC) generator, G = 100101, and suppose that D = 1000100100. 1. What is the value of R
    9·1 answer
  • Can space debris take out a whole state
    9·1 answer
  • I want to hear 1 of your guy's best jokes
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!