Answer:
They communicate ideas very quickly.
Explanation:
Answer: a. Leave the lane closest to the emergency as soon as it is safe to do so, or slow down to a speed of 20 MPH below the posted speed limit.
Explanation:
Giving a way to the law enforcement vehicle and a medical emergency vehicle is necessary. If one approaches an emergency vehicle parked along the roadway one should change the lane as the vehicle may not move and the driver may also waste his or her time also one should also slow down his or her speed while approaching the vehicle as most of the emergency vehicle are in rush to reach the hospital so the driver should maintain some distance with the medical emergency vehicle.
Answer:
thành thật mà nói bởi vì cách những chiếc lá đang chuyển và cách mặt trời chiếu sáng.
Answer:
![10.8\ \text{lb/ft^2}](https://tex.z-dn.net/?f=10.8%5C%20%5Ctext%7Blb%2Fft%5E2%7D)
![101.96\ \text{lb/ft}^2](https://tex.z-dn.net/?f=101.96%5C%20%5Ctext%7Blb%2Fft%7D%5E2)
Explanation:
= Velocity of car = 65 mph = ![65\times \dfrac{5280}{3600}=95.33\ \text{ft/s}](https://tex.z-dn.net/?f=65%5Ctimes%20%5Cdfrac%7B5280%7D%7B3600%7D%3D95.33%5C%20%5Ctext%7Bft%2Fs%7D)
= Density of air = ![0.00237\ \text{slug/ft}^3](https://tex.z-dn.net/?f=0.00237%5C%20%5Ctext%7Bslug%2Fft%7D%5E3)
![v_2=0](https://tex.z-dn.net/?f=v_2%3D0)
![P_1=0](https://tex.z-dn.net/?f=P_1%3D0)
![h_1=h_2](https://tex.z-dn.net/?f=h_1%3Dh_2)
From Bernoulli's law we have
![P_1+\dfrac{1}{2}\rho v_1^2+h_1=P_2+\dfrac{1}{2}\rho v_2^2+h_2\\\Rightarrow P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 95.33^2\\\Rightarrow P_2=10.8\ \text{lb/ft^2}](https://tex.z-dn.net/?f=P_1%2B%5Cdfrac%7B1%7D%7B2%7D%5Crho%20v_1%5E2%2Bh_1%3DP_2%2B%5Cdfrac%7B1%7D%7B2%7D%5Crho%20v_2%5E2%2Bh_2%5C%5C%5CRightarrow%20P_2%3D%5Cdfrac%7B1%7D%7B2%7D%5Crho%20v_1%5E2%5C%5C%5CRightarrow%20P_2%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%200.00237%5Ctimes%2095.33%5E2%5C%5C%5CRightarrow%20P_2%3D10.8%5C%20%5Ctext%7Blb%2Fft%5E2%7D)
The maximum pressure on the girl's hand is ![10.8\ \text{lb/ft^2}](https://tex.z-dn.net/?f=10.8%5C%20%5Ctext%7Blb%2Fft%5E2%7D)
Now
= 200 mph = ![200\times \dfrac{5280}{3600}=293.33\ \text{ft/s}](https://tex.z-dn.net/?f=200%5Ctimes%20%5Cdfrac%7B5280%7D%7B3600%7D%3D293.33%5C%20%5Ctext%7Bft%2Fs%7D)
![P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 293.33^2\\\Rightarrow P_2=101.96\ \text{lb/ft}^2](https://tex.z-dn.net/?f=P_2%3D%5Cdfrac%7B1%7D%7B2%7D%5Crho%20v_1%5E2%5C%5C%5CRightarrow%20P_2%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%200.00237%5Ctimes%20293.33%5E2%5C%5C%5CRightarrow%20P_2%3D101.96%5C%20%5Ctext%7Blb%2Fft%7D%5E2)
The maximum pressure on the girl's hand is ![101.96\ \text{lb/ft}^2](https://tex.z-dn.net/?f=101.96%5C%20%5Ctext%7Blb%2Fft%7D%5E2)
Answer:
Part a: The yield moment is 400 k.in.
Part b: The strain is ![8.621 \times 10^{-4} in/in](https://tex.z-dn.net/?f=8.621%20%5Ctimes%2010%5E%7B-4%7D%20in%2Fin)
Part c: The plastic moment is 600 ksi.
Explanation:
Part a:
As per bending equation
![\frac{M}{I}=\frac{F}{y}](https://tex.z-dn.net/?f=%5Cfrac%7BM%7D%7BI%7D%3D%5Cfrac%7BF%7D%7By%7D)
Here
- M is the moment which is to be calculated
- I is the moment of inertia given as
![I=\frac{bd^3}{12}](https://tex.z-dn.net/?f=I%3D%5Cfrac%7Bbd%5E3%7D%7B12%7D)
Here
- b is the breath given as 0.75"
- d is the depth which is given as 8"
![I=\frac{bd^3}{12}\\I=\frac{0.75\times 8^3}{12}\\I=32 in^4](https://tex.z-dn.net/?f=I%3D%5Cfrac%7Bbd%5E3%7D%7B12%7D%5C%5CI%3D%5Cfrac%7B0.75%5Ctimes%208%5E3%7D%7B12%7D%5C%5CI%3D32%20in%5E4)
![y=\frac{d}{2}\\y=\frac{8}{2}\\y=4"\\](https://tex.z-dn.net/?f=y%3D%5Cfrac%7Bd%7D%7B2%7D%5C%5Cy%3D%5Cfrac%7B8%7D%7B2%7D%5C%5Cy%3D4%22%5C%5C)
![\frac{M_y}{I}=\frac{F_y}{y}\\M_y=\frac{F_y}{y}{I}\\M_y=\frac{50}{4}{32}\\M_y=400 k. in](https://tex.z-dn.net/?f=%5Cfrac%7BM_y%7D%7BI%7D%3D%5Cfrac%7BF_y%7D%7By%7D%5C%5CM_y%3D%5Cfrac%7BF_y%7D%7By%7D%7BI%7D%5C%5CM_y%3D%5Cfrac%7B50%7D%7B4%7D%7B32%7D%5C%5CM_y%3D400%20k.%20in)
The yield moment is 400 k.in.
Part b:
The strain is given as
![Strain=\frac{Stress}{Elastic Modulus}](https://tex.z-dn.net/?f=Strain%3D%5Cfrac%7BStress%7D%7BElastic%20Modulus%7D)
The stress at the station 2" down from the top is estimated by ratio of triangles as
![F_{2"}=\frac{F_y}{y}\times 2"\\F_{2"}=\frac{50 ksi}{4"}\times 2"\\F_{2"}=25 ksi](https://tex.z-dn.net/?f=F_%7B2%22%7D%3D%5Cfrac%7BF_y%7D%7By%7D%5Ctimes%202%22%5C%5CF_%7B2%22%7D%3D%5Cfrac%7B50%20ksi%7D%7B4%22%7D%5Ctimes%202%22%5C%5CF_%7B2%22%7D%3D25%20ksi)
Now the steel has the elastic modulus of E=29000 ksi
![Strain=\frac{Stress}{Elastic Modulus}\\Strain=\frac{F_{2"}}{E}\\Strain=\frac{25}{29000}\\Strain=8.621 \times 10^{-4} in/in](https://tex.z-dn.net/?f=Strain%3D%5Cfrac%7BStress%7D%7BElastic%20Modulus%7D%5C%5CStrain%3D%5Cfrac%7BF_%7B2%22%7D%7D%7BE%7D%5C%5CStrain%3D%5Cfrac%7B25%7D%7B29000%7D%5C%5CStrain%3D8.621%20%5Ctimes%2010%5E%7B-4%7D%20in%2Fin)
So the strain is ![8.621 \times 10^{-4} in/in](https://tex.z-dn.net/?f=8.621%20%5Ctimes%2010%5E%7B-4%7D%20in%2Fin)
Part c:
For a rectangular shape the shape factor is given as 1.5.
Now the plastic moment is given as
![shape\, factor=\frac{Plastic\, Moment}{Yield\, Moment}\\{Plastic\, Moment}=shape\, factor\times {Yield\, Moment}\\{Plastic\, Moment}=1.5\times400 ksi\\{Plastic\, Moment}=600 ksi](https://tex.z-dn.net/?f=shape%5C%2C%20factor%3D%5Cfrac%7BPlastic%5C%2C%20Moment%7D%7BYield%5C%2C%20Moment%7D%5C%5C%7BPlastic%5C%2C%20Moment%7D%3Dshape%5C%2C%20factor%5Ctimes%20%7BYield%5C%2C%20Moment%7D%5C%5C%7BPlastic%5C%2C%20Moment%7D%3D1.5%5Ctimes400%20ksi%5C%5C%7BPlastic%5C%2C%20Moment%7D%3D600%20ksi)
The plastic moment is 600 ksi.