Answer:
The invention of the pendulum-driven ___<u>clocks</u>___ in the 1600s paved the way for a new industrial era.
I won leader solution contain 0.46 mL of hydronic I said of 0.3 potassium
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
Answer: (a) 9.00 Mega Newtons or 9.00 * 10^6 N
(b) 17.1 m
Explanation: The length of wall under the surface can be given by

The average pressure on the surface of the wall is the pressure at the centeroid of the equilateral triangular block which can be then be calculated by multiplying it with the Plate Area which will provide us with the Resultant force.
![F(resultant) = Pavg ( A) = (Patm + \rho g h c)*A \\= [100000 N/m^2 + (1000 kg/m^3 * 9.81 m/s^2 * 25m/2)]* (140*25m/sin60)\\= 8.997*10^8 N \\= 9.0*10^8 N](https://tex.z-dn.net/?f=F%28resultant%29%20%3D%20Pavg%20%28%20A%29%20%3D%20%28Patm%20%2B%20%20%5Crho%20g%20h%20c%29%2AA%20%5C%5C%3D%20%5B100000%20N%2Fm%5E2%20%2B%20%281000%20kg%2Fm%5E3%20%2A%209.81%20m%2Fs%5E2%20%2A%2025m%2F2%29%5D%2A%20%28140%2A25m%2Fsin60%29%5C%5C%3D%208.997%2A10%5E8%20N%20%5C%5C%3D%209.0%2A10%5E8%20N)
Noting from the Bernoulli equation that

From the second image attached the distance of the pressure center from the free surface of the water along the surface of the wall is given by:
Substituting the values gives us the the distance of the surface to be equal to = 17.1 m
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction
3. Convection
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W