Answer:
measuring the consumption of the products and the rate of conversion of products to reagents
Explanation:
It must be taken into account that the reaction rate also depends on the presence of a catalyst, since these advance the rate of the reaction.
Answer:
0.082g
Explanation:
The following data were obtained from the question:
Heat (Q) = 0.092J
Change in temperature (ΔT) = 0.267°C
Specific heat capacity (C) of water = 4.184J/g°C
Mass (M) =..?
Thus, the mass of present can be obtained as follow:
Q = MCΔT
0.092 = M x 4.184 x 0.267
Divide both side by 4.184 x 0.267
M = 0.092 / (4.184 x 0.267)
M = 0.082g
Therefore, mass of water was present is 0.082.
Answer:

Explanation:
Given:
A solution contains one or more of the following ions such as Ag,
and 
Here the Lithium bromide is added to the solution and no precipitate forms
Solution:
Since with LiBr no precipitation takes place therefore Ag+ is absent
Here on adding
to it precipitation takes place.
Precipitate is as follows,

Thus,
is present
When
is added again precipitation takes place.
Therefore the reaction is as follows,

Therefore,
are present in the solution
Answer:
MgCl2 > C4H9OH > CH4 > C3H8.
Explanation:
Alkanes do not form hydrogen bonds and are insoluble in polar solvents e.g water. The hydrogen bonds between water molecules are move away from an alkane molecule and this worsens as their Carbon chain / molecular weight increases.
MgCl2 is soluble in water. Water essentially breaks down the ionic crystal lattice and the resulting solution is slightly basic.
Alcohols are generally soluble in water and this is because of the -OH group and its ability to form hydrogen bonds with water molecules. As applied to alkanes, as the carbon chain in the alkyl group increases, the solubility decreases.
From the most soluble to the least soluble,
MgCl2 > C4H9OH > CH4 > C3H8.