x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work
Answer:
A. During the summer, Earth's rotational axis is parallel to the Sun's rotational axis.
Explanation:
Actually, though, the Earth is tilted 23.4 degrees! (A circle is 360 degrees.) This tilt is the reason that days are longer in the summer and shorter in the winter. The hemisphere that's tilted closest to the Sun has the longest, brightest days because it gets more direct light from the Sun's rays.
Plz mark me brainliest if correct :)
You would know that the variable is quantitative if it shows any number to express the quantity. For example, quantitative variables are 50°C, 5 atm, 2 moles, 100 L and so on. A variable is qualitative if it expresses a relative quantity but not expressing a number. Examples would be: few, too hot, several, or even describing the characteristics of a variable. Hence, when the variable is in grams, then that would be quantitative.
4. Molar mass of silver m Ms~=108 g/mol
Hence there are n=54*(1/108)=0.5 mols of Silver in 54 grams of Silver.
5. 6.3*(108/1)=680.4g
6. Avogadro's number : Na~=6.022×10^23<span>. </span>
6.0*(6.022*10^23/1)=36.132*10^23 atoms
7. Molar mass of Krypton : Mk=84 g/mol
112/84=1.33 moles of Kr
8. 1.93*10^24*(1/(6.022×10^23))=3.2 moles KF
9. Molar mass of Silicon : Ms=28 g/mol
86.2*(1/28)*(6.022×10^23/1)=18.5*10^23 atoms of silicon
10. Molar mass of Magnesium : M1=24 g/mol
4.8*10^24*(1/(6.022×10^23))*(24/1)=191 g Mg