Step-by-step explanation:
Note that t = d/r where t is time, d is distance, and r is rate/speed.
We can come up with two equations with the information given and the equation:
t_1 hr = (10 km)/(x km/hr)
t_2 hr = (12 km)/(x - 1 km/hr)
<em>where t_1 is the time taken to run the 10km the first day and t_2 is the time taken to run the 12km the second day.</em>
We know that 30 minutes is 1/2 of an hour and that t_1 is 30 minutes less than t_2 (as stated in the question). Therefore, we can write:
t_1 = t_2 - 1/2
Substituting the values we derived:
(10 km)/(x km/hr) = (12 km)/(x - 1 km/hr) -1/2
Then we can evaluate by multiplying by 2x(x-1) on both sides:
20(x-1) = 24x - (x)(x-1)
20x - 20 = 24x - x^2 + x
x^2 -5x -20 = 0
And we are done.
I hope this helps! :)
Divide! If you add three and four, you get seven. Subtracting four from seven, you get three. If you multiply three and four, you get twelve. If you then divide by four, you get back to 3. I hope this helped!
(125^2x)(5x) = 25^3
(15625x)(5x)=15625
<span>78125x=15625
</span>x=5
Hope I helped ;D
About 88? people are present.