<span>As the moisture-rich air approaches the mountain, it rises and cools, and water molecules in the air combine to form small drops. The process where water vapor becomes a liquid is called condensation. </span>
Answer:
Yes, it's temperature dependent
Explanation:
A good fractional distillation depends largely upon maintaining a temperature gradient within the column. Perfectly, the temperature at the bottom of the column should be close or similar to the boiling temperature of the solution in the pot, and it should reduce continuously in the column until it reaches the boiling point of the more volatile component at the top of the column. If the distillation flask is heated too quickly, the whole column will heat up almost distributively and eliminate the desired temperature gradient. The result will be little fractionation and separation of the components.
Answer:
The correct answer is 0.25 moles NH₃
Explanation:
First, we need to know the chemical equation for NH₃ formation from H₂. The balanced chemical reaction involved in NH₃ obtention is the following:
N₂(g) + 3 H₂(g) → 2 NH₃(g)
According to this, 2 moles of NH₃ are formed from 3 moles of H₂. We can write that estequiometrical relation as: 2 moles NH₃/ 3 moles H₂.
From the problem, we have to calculate how many moles of NH₃ are produced from 0.37 moles H₂. So, we can simply multiply the number of moles of H₂ to obtain by the convertion factor:
0.37 moles H₂ x 2 moles NH₃/ 3 moles H₂= 0.246 moles NH₃ ≅ 0.25 moles NH₃
Thus, 0.25 moles of NH₃ will be obtained.
Answer is: <span> two samples have in common same amount of substance and same number of particles.
1) There are same amount of substance in both beakers:
n(Zn) = 1 mol.
n(ZnCl</span>₂) = 1 mol.
2) There are same number of particles (atoms, molecules, ions) in both beakers:
N(Zn) = n(Zn) · Na.
N(Zn) = 1 mol · 6.023·10²³ 1/mol = 6.023·10²³ atoms of zinc.
N(ZnCl₂) = n(ZnCl₂) · Na.
N(ZnCl₂) = 1 mol · 6.023·10²³ 1/mol = 6.023·10²³ molecules of zinc(II) chloride.
Na - Avogadro number.