The ionization energy for a hydrogen atom in the n = 2 state is 328 kJ·mol⁻¹.
The <em>first ionization energy</em> of hydrogen is 1312.0 kJ·mol⁻¹.
Thus, H atoms in the <em>n</em> = 1 state have an energy of -1312.0 kJ·mol⁻¹ and an energy of 0 when <em>n</em> = ∞.
According to Bohr, Eₙ = k/<em>n</em>².
If <em>n</em> = 1, E₁= k/1² = k = -1312.0 kJ·mol⁻¹.
If <em>n</em> = 2, E₂ = k/2² = k/4 = (-1312.0 kJ·mol⁻¹)/4 = -328 kJ·mol⁻¹
∴ The ionization energy from <em>n</em> = 2 is 328 kJ·mol⁻¹
.
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.
Answer:
The answer to your question is given below.
Explanation:
To prepare 50mL of 3M HCl, we must calculate the volume of the stock solution needed. This can obtained as follow:
Molarity of stock solution (M1) = 12M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 3M
Volume of diluted solution (V2) = 50mL
The volume of the stock solution needed can be obtained by using the dilution formula as shown below:
M1V1 = M2V2
12 x V1 = 3 x 50
Divide both side by 12
V1 = (3 x 50)/12
V1 = 12.5mL
The volume of the stock solution needed is 12.5mL
Therefore, to prepare 50mL of 3M HCl, we must measure 12.5mL of the stock solution i.e 12M HCl and then, add water to the mark in a 1L volumetric flask. Now we can measure out 50mL of the solution.
Answer:
5.5 L
Explanation:
Step 1: Given data
- Initial volume (V₁): 6.5 L
- Initial pressure (P₁): 840 mmHg
- Initial temperature (T₁): 84 °C
- Final pressure (P₂): 760 mmHg (standard pressure)
- Final temperature (T₂): 273.15 K (standard temperature)
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C + 273.15
K = 84 °C + 273.15 = 357 K
Step 3: Calculate the final volume of the gas
We will use the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 840 mmHg × 6.5 L × 273.15 K / 357 K × 760 mmHg = 5.5 L