Answer: D=4.35g/L
Explanation:
The formula for density is
. M is mass in grams and V is volume in liters.
Since we are give pressure and temperature, we can use the ideal gas law to find moles/volume. FInding moles/volume would give us the base for density. All we would have to do is convert moles to grams.
Ideal Gas Law: PV=nRT



Now that we have moles, we can use molar mass of chlorine gas to find grams.

With our grams, we can find our density.

We need correct significant figures so our density is:

Answer: option C.Water will move into the cell
Explanation:
1) Start by analyzing what the statement means in terms of relative concentrations:
------------------------ | inside the cell ------------ | outside the cell |
sugar --------------- | higher ----------------------- | lower ------------- |
water -------------- | lower ------------------------- | higher ------------ |
2) Osmosis is the process where a barrier (the celll membrane) permits the pass of some component and not others.
The component that can pass is that whose particles are smaller. Sugar molecules (the solute) are bigger than water molecules (the solvent), so sugar molecules cannot pass the cell membrane. Only water can.
3) The driviing force for the motion of water molecules is called diffusion. The diffusion occurs from higher concentrations to lower concentrations.
Hence, the water molecules will from outside the outiside the cell, where they have the greater concentration, toward the inside of the cell, where water hasa the lower concentration.
As result, the water will move into the cell, which is the option C.
Answer:
b) Phosphorus acid
Explanation:
To distinguish the type of acid of phosphorus with the oxidation state of +3, we need to be familiar with the chemical formula of each of the compounds:
Orthophosphoric acid H₃PO₄
Phosphorus acid H₃PO₃
Metaphosphoric acid HPO₃
Phyrophosphoric acid H₄P₂O₇
Now that we know the formula of the given compounds, the algebraic sum of all the oxidation numbers of all atoms in a neutral compound is zero:
Only phosphorus acid yielded an oxidation state of +3 for phosphorus in the compound.
H₃PO₃:
we know the oxidation state of H = +1
O = -2
The oxidation state of P is unknown. We can express this as an equation:
3(+1) + P + 3(-2) = 0
3 + P -6 = 0
P-3 = 0
P = +3
Answer : The correct option is, 13.7 mole
Solution : Given,
Moles of
= 27.4 moles
The given balanced chemical reaction is,

From the balanced chemical reaction, we conclude that
As, 2 moles of
react with 1 moles of 
So, 27.4 moles of
react with
moles of 
Therefore, the number of moles of oxygen
required are, 13.7 moles