Option B. From the parallelogram PQRS the value of y is given to be 30
<h3>How to solve for the value of y from the parallelogram</h3>
In order to get the value of y we have to use the formula
2y + 120 = 80
where the value 120 is the angle that is stated as 120 from the question
2y = 180 - 120
2y = 60
y = 60 / 2
y = 30
Hence the value of y = 30
We can go ahead to get the value of x as well
3x + 120 = 180
take the like terms
3x = 180 - 120
3x = 60
divide through by 3 to get x
60 / 3 = x
20 = x
Read more on parallelograms here: brainly.com/question/24056495
#SPJ1
For this case we have the following inequality:
3y - 2x> 8
The first thing we should do is to graph the function.
Then, see the set of points that are the solution of the inequality.
The solution set is given by the shaded region.
See attached image.
Answer:
Shaded region.
See attached image.
Answer:
Step-by-step explanation:
Problem One (left panel)
<em><u>Question A</u></em>
- The y intercept happens when x = 0
- That being said, the y intercept is 50. It was moving when the timing began.
<em><u>Question B</u></em>
The rate of change = (56 - 52)/(3 - 1) = 4/2 = 2 miles / hour^2 (you have a slight acceleration.
<em><u>Question C</u></em>
- 60 = a + (n-1)d
- 60 = 50 + (n - 1)*2
- 10/2 = (n - 1)*2/2
- 5 = n - 1
- 6 = n
The way I have done it the domain is n from 1 to 6
Question 2 (Right Panel)
<em><u>Question A</u></em>
The equation for the table is f(x) = 3x - 3 which was derived simply by putting all three points into y = ax + b and solving.
- f(0) = ax + b
- -3 = a*0) + b
- b = - 3
- So far what you have is
- f(x) = ax - 3
- f(-1) = a*(-1) - 3 but we know (f(-1)) = -6
- - 6 = a(-1) - 3 add 3 to both sides
- -6 +3 = a(-1) -3 + 3
- -3 = a*(-1) Divide by - 1
- a = 3
- f(x) = 3x - 3 Answer for f(x)
- The slope of f(x) = the coefficient in front of the x
- f(x) has a slope of 3
- g(x) has a slope of 4
<em><u>Part B</u></em>
- f(x) has a y intercept of - 3
- g(x) has a y intercept of -5
- f(x) has the greater y intercept.
- -3 > - 5
Answer:
A) The best way to picture this problem is with a probability tree, with two steps.
The first branch, the person can choose red or blue, being 2 out of five (2/5) the chances of picking a red marble and 3 out of 5 of picking a blue one.
The probabilities of the second pick depends on the first pick, because it only can choose of what it is left in the urn.
If the first pick was red marble, the probabilities of picking a red marble are 1 out of 4 (what is left of red marble out of the total marble left int the urn) and 3 out of 4 for the blue marble.
If the first pick was the blue marble, there is 2/4 of chances of picking red and 2/4 of picking blue.
B) So a person can have a red marble and a blue marble in two ways:
1) Picking the red first and the blue last
2) Picking the blue first and the red last
C) P(R&B) = 3/5 = 60%
Step-by-step explanation:
C) P(R&B) = P(RB) + P(BR) = (2/5)*(3/4) + (3/5)*(2/4) = 3/10 + 3/10 = 3/5
change 3/4 to 6/8 and add 6/8 and 1/8 to get 7/8
he walked 7/8 miles in total :)