Answer:
Explanation:
When you are in the laboratory and take a direct sniff of the chemicals you are using, you run the risk of damaging your mucous membranes or your lungs. When it is necessary to smell chemicals in the lab, the proper technique is to cup your hand above the container and waft the air toward your face.
One way of knowing that oxygen was the gas removed from the volume of air and not another is to know what the volume of air is made of first. When the composition of the volume of air is already identified, then next would be the process of separating these elements from each other and as to which is to be separated first. This would usually lead to knowing their masses, their boiling and freezing points, the temperatures at which they condense, and so on. This is to identify their differences to each other and use those differences to successfully separate those elements to each other.
Answer:
the stabilization of the negative charge in orbitals with higher s character
Explanation:
Acetylide anion is a carbon anion compound or popularly called carbanion. Now Acetylide anion is sp hybridized. However acetylide anion tends to be more acidic as we move from sp³ to sp, hence acidicity increases, which makes sp to have the highest acidity and become the most stable.
So, we can conclude that the acetylide anion is more acidic due to the stabilization of the negative charge in orbitals with higher s character and as the s character increases, acidic nature of acetylide anion also increases.
Explanation:
There are several ways to define acids and bases, but pH and pOH refer to hydrogen ion concentration and hydroxide ion concentration, respectively. The "p" in pH and pOH stands for "negative logarithm of" and is used to make it easier to work with extremely large or small values. pH and pOH are only meaningful when applied to aqueous (water-based) solutions. When water dissociates it yields a hydrogen ion and a hydroxide.
My answer to this question is C