Answer:
the answer is b Li + Cl2 .....
A bicycle rusting after it is left in the rain is an example of a chemical reaction because it involves oxidation (Option d).
<h3>What is a chemical reaction?</h3>
A chemical reaction can be defined as a phenomenon in which one or more substances called reactants react to form one or more different compounds, which are known as products.
A chemical reaction may include an enzyme that works to increase the seed of the reaction in normal conditions by lowering the activation energy of the reaction.
Therefore, we can conclude that a chemical reaction such as oxidation in a bicycle is a process where reactants combine or break down to form the products of such reaction.
Complete question:
Which of the following situations contains an example of a chemical reaction?
a. Ice forming after water is placed in a freezer
b. Watercolor paint drying on paper
c. a sugar cube dissolving in a glass of water
d. a bicycle rusting after it is left in the rain
Learn more about chemical reactions here:
brainly.com/question/11231920
#SPJ1
WATER is wet to make it a more marketable commodity
Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
Answer: 0.0069L
Explanation:
2H2O(l) ---->O2(g) + 4H+(aq) + 4e-
no of moles= it/eF
NO of moles of O2 produced = (Current in Ampere x Time in second)/ (Faraday constant x Number of electrons required)
Moles of O2 produced = (0.02x (60 x 60X1.5 s)/(96485 x 4)
= 0.0002798 moles= 2.798x 10 ^-4moles
Using ideal gas equation,
P V = n R T
Where, P is the pressure,
V is the volume,
n is the number of moles,
R is the gas constant, and T is the temperature
We have, 1 bar = 0.986923 atm
Substituting the values,
V = nRT/P = (2.798 x 10-4moles x 0.08205 L atm mol K x 298 K)/ 0.986923 atm = 0.0069L
Volume of O2 produced = 0.0069L