Answer:
x = 3.255 cm
Step-by-step explanation:
Given:
⇒ y = 10cm
⇒ θ = 19
To find:
⇒ Value of "n"
Solution
⇒ By Pythagoras theorem
⇒ Δ Sin θ = n/y
⇒ sin 19° = n/10
⇒ 0.3255 = n/10
⇒ n = 0.3255 × 10
⇒ n = 3.255 cm
Hence, the answer is = n = 3.255 cm.
Answer:
D
Step-by-step explanation:
C=2PI R
Radius is 24
pi is 3.14
Then you just solve it which turns out to be 150.8
Answer:
The standard parabola
y² = -18 x +27
Length of Latus rectum = 4 a = 18
Step-by-step explanation:
<u><em>Explanation:-</em></u>
Given focus : (-3 ,0) ,directrix : x=6
Let P(x₁ , y₁) be the point on parabola
PM perpendicular to the the directrix L
SP² = PM²
(x₁ +3)²+(y₁-0)² = 
x₁²+6 x₁ +9 + y₁² = x₁²-12 x₁ +36
y₁² = -18 x₁ +36 -9
y₁² = -18 x₁ +27
The standard parabola
y² = -18 x +27
Length of Latus rectum = 4 a = 4 (18/4) = 18
Answer: 80
1 hour= 60mins
So to know how many words can she type in 1 min, we do the math "4800 : 60"
Answer:
Dh/dt = 0.082 ft/min
Step-by-step explanation:
As a perpendicular cross section of the trough is in the shape of an isosceles triangle the trough has a circular cone shape wit base of 1 feet and height h = 2 feet.
The volume of a circular cone is:
V(c) = 1/3 * π*r²*h
Then differentiating on both sides of the equation we get:
DV(c)/dt = 1/3* π*r² * Dh/dt (1)
We know that DV(c) / dt is 1 ft³ / 5 min or 1/5 ft³/min
and we are were asked how fast is the water rising when the water is 1/2 foot deep. We need to know what is the value of r at that moment
By proportion we know
r/h ( at the top of the cone 0,5/ 2) is equal to r/0.5 when water is 1/2 foot deep
Then r/h = 0,5/2 = r/0.5
r = (0,5)*( 0.5) / 2 ⇒ r = 0,125 ft
Then in equation (1) we got
(1/5) / 1/3* π*r² = Dh/dt
Dh/dt = 1/ 5*0.01635
Dh/dt = 0.082 ft/min