Answer:
Step-by-step explanation:
332 323 233

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>
If I were one of the students in Barangay then I shall prepare the design of kite by using the known properties of kites in mathematics.
For example, Symmetrical about its main diagonals, Adjacent side equals, Having two pairs of congruent triangle etc.
<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>
Design of kite assign to me
<u>Step </u><u>1</u><u> </u><u>:</u><u>-</u>
- I shall take one paper and cut it like that the adjacent sides of paper are equal
<u>Reason </u><u>:</u><u>-</u>
- <u>Adjacent </u><u>sides </u><u>of </u><u>kite </u><u>are </u><u>equal </u>
<u>Step </u><u>2</u><u> </u><u>:</u><u>-</u>
- I shall take two thin sticks and paste it on the paper but sticks should intersect each other at 90°
<u>Reason</u><u> </u><u>:</u><u>-</u>
- <u>Kite</u><u> </u><u>has </u><u>2</u><u> </u><u>diagonals </u><u>which </u><u>intersect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u><u> </u><u>.</u>
<u>Step </u><u>3</u><u> </u><u>:</u><u>-</u>
- <u>Make </u><u>a </u><u>hole </u><u>in </u><u>the </u><u>one </u><u>of </u><u>the </u><u>end </u><u>point </u><u>of </u><u>a </u><u>longest </u><u>sides</u><u>. </u>
<u>Observation </u><u>:</u><u>-</u>
- <u>The </u><u>kite </u><u>should </u><u>be </u><u>looked </u><u>like </u><u>that </u><u>it </u><u>having </u><u>two </u><u>pairs </u><u>of </u><u>congruent </u><u>triangle</u><u> </u><u>with </u><u>common </u><u>base. </u>
<h3><u>Answer </u><u>3</u><u> </u><u>:</u><u>-</u></h3>
- The adjacent sides of the kites are equal that is 4cm and 6cm
- The diagonals of the kite bisect each other at 90°
- As kite is symmetrical from main diagonals , so it has two opposite and equal Angles that is 127°
- The opposite angles at the end points of kite are congruent that is Angle D and Angle C
- AC is the bisector of AB and AB is the bisector of AC .
[ Note :- Kindly refer the above attachment ]
<h3><u>Answer </u><u>4</u><u> </u><u>:</u><u>-</u></h3>
All mathematical concepts used in making kite are as follows :-
- <u>Adjacent </u><u>sides </u><u>are </u><u>equal </u>
- <u>Diagonal </u><u>intersect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u>
- <u>Having </u><u>two </u><u>pairs </u><u>of </u><u>congruent </u><u>triangle </u><u>with </u><u>common </u><u>base </u>
- <u>Symmetrical </u><u>about</u><u> </u><u>its </u><u>main </u><u>diagonal</u>
- <u>Opposite </u><u>angles </u><u>at </u><u>the </u><u>end </u><u>points </u><u>are </u><u>equal</u>
Use basic multiplication: 7x (8) = 56x
or 7(8) x = 56x
Option D: 3 is the slope of the diagonal GE
Explanation:
Given that EFGH is a square drawn on a coordinate plane.
Diagonal FH is on the line 
We need to determine the slope of the diagonal GE.
Since, EFGH is a square and FH and GE are diagonals of the square.
The diagonals FH and GE are perpendicular to each other.
Thus, the slope of GE can be determined using the formula,

where
is the slope of FH and
is the slope of GE
From the line
, the slope is given by

Let us substitute the slope
in the formula, we get,

Multiplying both sides by
, we have,

Thus, the slope of the diagonal GE is 3
Therefore, Option D is the correct answer.