Hi there!

Our interval is from 0 to 3, with 6 intervals. Thus:
3 ÷ 6 = 0.5, which is our width for each rectangle.
Since n = 6 and we are doing a right-riemann sum, the points we will be plugging in are:
0.5, 1, 1.5, 2, 2.5, 3
Evaluate:
(0.5 · f(0.5)) + (0.5 · f(1)) + (0.5 · f(1.5)) + (0.5 · f(2)) + (0.5 · f(2.5)) + (0.5 · f(3)) =
Simplify:
0.5( -2.75 + (-3) + (-.75) + 4 + 11.25 + 21) = 14.875
A≈314.16 have a good day :)
The steps to solving an inequality are: add or subtract from each side - multiply or divide both sides - simplify.
5x + 8 > -12
5x > -12 - 8
5x > -20
x > -20/5
x > -4
The answer is: x > -4
Step-by-step explanation:
3a²-7a−6
Factor the expression by grouping. First, the expression needs to be rewritten as 3a
2
+pa+qa−6. To find p and q, set up a system to be solved.
p+q=−7
pq=3(−6)=−18
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product −18.
1,−18
2,−9
3,−6
Calculate the sum for each pair.
1−18=−17
2−9=−7
3−6=−3
The solution is the pair that gives sum −7.
p=−9
q=2
Rewrite 3a
2−7a−6 as (3a
2−9a)+(2a−6).
(3a 2−9a)+(2a−6)
Factor out 3a in the first and 2 in the second group.
3a(a−3)+2(a−3)
Factor out common term a−3 by using distributive property.
(a−3)(3a+2)