Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
Even though two grams seemed to disappear or vanish, the law of conversation of mass still holding true. Mercuric oxide, when heated, forms a gas of mercury and oxygen. During the investigation, some gas could have escaped or evaporated.
The experimental mole ratio of silver chloride to barium chloride is calculated as below
fin the mole of each compound
mole= mass/molar mass
moles of AgCl = 14.5g/142.5 g/mol = 0.102 moles of AgCl
moles of BaCl2 = 10.2 g/208 g/mol = 0.049 moles of BaCl2
find the mole ratio by dividing each mole with the smallest mole(0.049)
AgCl= 0.102/0.049 =2
BaCl2 = 0.049/0.049 =1
therefore the mole ratio AgCl to BaCl2 is 2 :1
Answer:
It's because removal of electron from an atom, reduces the size of an atom.
Explanation:
When an electron is removed from an atom, it becomes an ion and in this case it will become a postive ion.
When an electron is removed from an atom, the charge balance of an atom is disturbed and positive charge increases in comparison to the negative charge. This results in increase nuclear (positive) charge which exerts greater attraction on the remaining electrons and as a result the remaining electrons are more strongly attracted by the nucleus and in this way the atomic size is decreased. Due to this increased nuclear attraction and reduced atomic size, it bcomes difficult to remove more electeon from the positively charged ion of reduced size. This is the reason that each successive ionization of electron requires a greater amount of energy.
The ionization energy has inverse relation with the size or radius of an atom. This also justifies the reason that why each successive ionization of an electron requires greater amount of energy.