Answer:

Explanation:
= Initial pressure = 931 torr = 
= Final pressure = 113 kPa
= Initial volume = 350 mL
= Final volume
From the Boyle's law we have

The volume the gas would occupy is
.
Answer:
A) positive; added
Explanation:
Based on the reaction:
2NaHCO3(s) + 129kJ → Na2CO3(s) + H2(g) + CO2(g)
<em>2 moles of NaHCO3 requires 129kJ to produce 1 mole of Na2CO3, 1 mole of H2 and 1 mole of CO2.</em>
<em />
That means, the energy must be added being, thus, an exothermic reaction. The exothermic reactions have ΔH >0.
Thus, right answer is:
A) positive; added
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
4% mass / volume :
4 g ---------> 100 mL
1.2 g ------- ? mL
V = 1.2 * 100 / 4
V = 120 / 4
V = 30 mL
hope this helps!
Answers:
Density = 0.8 g/mol.
Given data:
v = 25 ml
m = 20 g
δ = ?
Solution:
Formula for calculating density is given as,
Density = Mass / Volume
putting values
Density = 20.0 g / 25 ml
Density = 0.8 g/mol.