A) 10.0g of Iron is

of Iron.
One mole of dihydrogen is required to form one mole of iron, hence you'll need

of dihydrogen.
B) Likewise : 2.50g of Iron is

of Iron, hence we'll need

of Fe2O3.
Calcium reacts gently with water to give hydrogen and calcium hydroxide, which is only slightly soluble, thus slows down the reaction.
It will be assumed that hydrochloric acid used is a dilute aqueous solution.
However, calcium reacts with hydrochloric acid to give calcium chloride which is readily soluble in water, and hydrogen, being a typical reaction of relatively active metals with acids.
Ca(s) + 2HCl(aq) -> CaCl2(aq) +H2(g) ↑ + heat
The clues that it is a chemical reaction could be:
- formation of a new substance, gaseous hydrogen
- disappearance of a metallic solid in the solution
- heat formed during the vigorous reaction.
As silver is below hydrogen in the electrochemical series, it will not be expected to react with dilute hydrocloric acid. (however, it dissolves in oxidizing acid such as nitric acid, but not displacing hydrogen as a product).
Answer:
Explanation:
The objective here is mainly drawing the diagrams of every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane.
Stereoisomerism is the difference of the spatial arrangement of atoms in a molecule or a compound with the same molecular formula.
For 1-bromo-2-chloro-1,2-difluorocyclopentane.
We have the stereoisomers as follows:
(1R,2S)-1-bromo-2-chloro-1,2-difluorocyclopentane.
(1S,2R)-1-bromo-2-chloro-1,2-difluorocyclopentane.
(1S,1S)-1-bromo-2-chloro-1,2-difluorocyclopentane.
(1R,1R)-1-bromo-2-chloro-1,2-difluorocyclopentane.
Their diagrams are drawn and shown in the attached file below in the order with which they are listed above.