Answer:
87.54 g of H₂O₂
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 1.55×10²⁴ molecules
Mass of H₂O₂ =.?
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole of H₂O₂
Next, we shall determine the mass of 1 mole of H₂O₂. This can be obtained as follow:
1 mole of H₂O₂ = (2×1) + (2×16)
= 2 + 32
= 34 g
Thus,
6.02×10²³ molecules = 34 g of H₂O₂
Finally, we shall determine mass of H₂O₂ that contains 1.55×10²⁴ molecules. This can be obtained as follow:
6.02×10²³ molecules = 34 g of H₂O₂
Therefore,
1.55×10²⁴ molecules
= (1.55×10²⁴ × 34)/6.02×10²³
1.55×10²⁴ molecules = 87.54 g of H₂O₂
Thus, 87.54 g of H₂O₂ contains 1.55×10²⁴ molecules.
Answer:
A)Hydrogen can be stored physically as either a gas or a liquid. Storage of hydrogen as a gas typically requires high-pressure tanks (350–700 bar [5,000–10,000 psi] tank pressure). Storage of hydrogen as a liquid requires cryogenic temperatures because the boiling point of hydrogen at one atmosphere pressure is −252.8°C.
B) carrying capacity of the lithium reserve will reach 10 million EV and 90 billion CE's RLBs for 50% recycling of lithium-containing waste, and 15 million EV and 150 billion CE's RLBs for 90% recycling.
Explanation:
Hope this helped Mark BRAINLEST!!
Answer:
540.54 mmHg
Explanation:
We know that the partial pressure of a substance is defined as; Mole fraction * total pressure.
If the total amount of gases in the atmosphere is 100%, the mole fraction of nitrogen gas is now
78/100 = 0.78
Thus, partial pressure of nitrogen gas = 0.78 * 693 = 540.54 mmHg
Answer:
A car stopped at the top of a hill
Explanation:
Potential energy is the energy that is stored in an object due to its position relative to some zero position.
therefore, the answer is the first option
=> A car stopped at the top of a hill
hope this helps and is right :)