In chemistry and atomic physics, the main group is the group of elements whose lightest members are represented by helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, and fluorine as arranged in the periodic table of the elements
Answer is: pH of barium hydroxide is 13.935.
Chemical dissociation of barium hydroxide in water:
Ba(OH)₂(aq) → Ba²⁺(aq) + 2OH⁻(aq).
c(Ba(OH)₂) = 0.43 M.
V(Ba(OH)₂) = 100 mL ÷ 1000 mL/L = 0.1 L.
n(Ba(OH)₂) = 0.43 mol/L · 0.1 L.
n(Ba(OH)₂) = 0.043 mol.
From chemical reaction: n(Ba(OH)₂) : n(OH⁻) = 1 : 2.
n(OH⁻) = 0.086 mol.
c(OH⁻) = 0.86 mol/L.
pOH = -logc(OH⁻).
pOH = 0.065.
pH = 14 - 0.065 = 13.935.
Answer:
The total mass of D-Glucose dissolved in a 2μL aliquot is 1 E-4 g
Explanation:
providing a solution to 5% weight-volume as found in commerce:
⇒ % 5 = (5g d-glucose/ 100 mL sln)×100
⇒ 0.05 = g C6H12O6/mL sln
⇒ g C6H12O6 = (2 μL sln)×(0.001 mL/μL)×(0.05 g C6H12O6/mL sln)
⇒ g C6H12O6 = 1 E-4 g C6H12O6
Answer:
The heat capacity for the sample is 0.913 J/°C
Explanation:
This is the formula for heat capacity that help us to solve this:
Q / (Final T° - Initial T°) = c . m
where m is mass and c, the specific heat of the substance
27.4 J / (80°C - 50°C) = c . 6.2 g
[27.4 J / (80°C - 50°C)] / 6.2 g = c
27.4 J / 30°C . 1/6.2g = c
0.147 J/g°C = c
Therefore, the heat capacity is 0.913 J/°C
Answer:
B
Explanation:
You take the net force and subtract it from the weight