Answer:
(2,-2)
Step-by-step explanation:
The midpoint of the line segment with endpoints
and
has coordinates

If the endpoints of the line segment are (-2,5) and (6,-9), then the midpoint has the coordinates

Answer:
10% chance or 1/10
Step-by-step explanation:
5 out of the 100 cards are free lunches simplified it would be
1/10
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>A</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>helpful</em><em> </em><em>to</em><em> </em><em>you</em><em>.</em><em>.</em>
Answer:
(See attached graph)
Step-by-step explanation:
To solve a second-order homogeneous differential equation, we need to substitute each term with the auxiliary equation
where the values of
are the roots:

Since the values of
are complex conjugate roots, then the general solution is
where
.
Thus, the general solution for our given differential equation is
.
To account for both initial conditions, take the derivative of
, thus, ![y'(x)=-2e^{-2x}[C_1cos(\sqrt{6}x+C_2sin(\sqrt{6}x)]+e^{-2x}[-C_1\sqrt{6}sin(\sqrt{6}x)+C_2\sqrt{6}cos(\sqrt{6}x)]](https://tex.z-dn.net/?f=y%27%28x%29%3D-2e%5E%7B-2x%7D%5BC_1cos%28%5Csqrt%7B6%7Dx%2BC_2sin%28%5Csqrt%7B6%7Dx%29%5D%2Be%5E%7B-2x%7D%5B-C_1%5Csqrt%7B6%7Dsin%28%5Csqrt%7B6%7Dx%29%2BC_2%5Csqrt%7B6%7Dcos%28%5Csqrt%7B6%7Dx%29%5D)
Now, we can create our system of equations given our initial conditions:
![y(x)=e^{-2x}[C_1cos(\sqrt{6}x)+C_2sin(\sqrt{6}x)]\\\\y(0)=e^{-2(0)}[C_1cos(\sqrt{6}(0))+C_2sin(\sqrt{6}(0))]=3\\\\C_1=3](https://tex.z-dn.net/?f=y%28x%29%3De%5E%7B-2x%7D%5BC_1cos%28%5Csqrt%7B6%7Dx%29%2BC_2sin%28%5Csqrt%7B6%7Dx%29%5D%5C%5C%5C%5Cy%280%29%3De%5E%7B-2%280%29%7D%5BC_1cos%28%5Csqrt%7B6%7D%280%29%29%2BC_2sin%28%5Csqrt%7B6%7D%280%29%29%5D%3D3%5C%5C%5C%5CC_1%3D3)
![y'(x)=-2e^{-2x}[C_1cos(\sqrt{6}x+C_2sin(\sqrt{6}x)]+e^{-2x}[-C_1\sqrt{6}sin(\sqrt{6}x)+C_2\sqrt{6}cos(\sqrt{6}x)]\\\\y'(0)=-2e^{-2(0)}[C_1cos(\sqrt{6}(0))+C_2sin(\sqrt{6}(0))]+e^{-2(0)}[-C_1\sqrt{6}sin(\sqrt{6}(0))+C_2\sqrt{6}cos(\sqrt{6}(0))]=-2\\\\-2C_1+\sqrt{6}C_2=-2](https://tex.z-dn.net/?f=y%27%28x%29%3D-2e%5E%7B-2x%7D%5BC_1cos%28%5Csqrt%7B6%7Dx%2BC_2sin%28%5Csqrt%7B6%7Dx%29%5D%2Be%5E%7B-2x%7D%5B-C_1%5Csqrt%7B6%7Dsin%28%5Csqrt%7B6%7Dx%29%2BC_2%5Csqrt%7B6%7Dcos%28%5Csqrt%7B6%7Dx%29%5D%5C%5C%5C%5Cy%27%280%29%3D-2e%5E%7B-2%280%29%7D%5BC_1cos%28%5Csqrt%7B6%7D%280%29%29%2BC_2sin%28%5Csqrt%7B6%7D%280%29%29%5D%2Be%5E%7B-2%280%29%7D%5B-C_1%5Csqrt%7B6%7Dsin%28%5Csqrt%7B6%7D%280%29%29%2BC_2%5Csqrt%7B6%7Dcos%28%5Csqrt%7B6%7D%280%29%29%5D%3D-2%5C%5C%5C%5C-2C_1%2B%5Csqrt%7B6%7DC_2%3D-2)
We then solve the system of equations, which becomes easy since we already know that
:

Thus, our final solution is:
![y(x)=e^{-2x}[C_1cos(\sqrt{6}x)+C_2sin(\sqrt{6}x)]\\\\y(x)=e^{-2x}[3cos(\sqrt{6}x)+\frac{2\sqrt{6}}{3}sin(\sqrt{6}x)]](https://tex.z-dn.net/?f=y%28x%29%3De%5E%7B-2x%7D%5BC_1cos%28%5Csqrt%7B6%7Dx%29%2BC_2sin%28%5Csqrt%7B6%7Dx%29%5D%5C%5C%5C%5Cy%28x%29%3De%5E%7B-2x%7D%5B3cos%28%5Csqrt%7B6%7Dx%29%2B%5Cfrac%7B2%5Csqrt%7B6%7D%7D%7B3%7Dsin%28%5Csqrt%7B6%7Dx%29%5D)