Answer:
Firstly, from the diagram we are given that the length of XB is congruent to BZ, and YC is congruent to CZ. Based on this information, we know that B is the midpoint of XZ, and C is the midpoint of YZ. This means that BC connects the midpoints of segments XZ and YZ. Now that we know this, we can use the Triangle Midsegment Theorem to calculate the length of BC. This theorem states that if a segment connects the midpoints of two sides of a triangle, then the segment is equal to one-half the length of the third side. In this scenario, the third side would be XY, which has a length of 12 units. Therefore, the length of BC = 1/2(XY), and we can substitute the value of XY and solve this equation:
BC = 1/2(XY)
BC = 1/2(12)
BC = 6
Step-by-step explanation:
Please support my answer.
 
        
             
        
        
        
Answer:
Dont get it either im stuck on it
Step-by-step explanation:
 
        
                    
             
        
        
        
First way
arcsin(1/4) means that 1/4 sin of the angle.
sin(α)=1/4
sin²α+cos²α=1
(1/4)²+cos²α=1
cos²α=1-1/16 =15/16
cosα=+/-(√15)/4
<span>Second way
</span>
sin(α)=1/4 =opposite leg/hipotenuse
cos(α)=adjacent leg/hypothenuse
adjacent leg =√(hypotenuse²- Opposite²)=√(16-1)=√15
cosα=+/-√15/4
For one value of sinα, possible 2 values of cosα.
        
             
        
        
        
Answer:
2√6 ft
Step-by-step explanation:
Tan Ф = opposite/ adjacent
tan 60  = t / 2√2 ft
tan 60 = √3
t = (tan 60 )(2√2 ft)
t = (√3)(2√2 ft)  = 2√6 ft
 
        
             
        
        
        
Answer:
x = 7 is your answer.
Step-by-step explanation:
Here is what you do:
<em>x + 16 = 4x - 5</em>
<em>-3x + 16 = -5</em>
<em>-3x = -21</em>
x = 7 is your answer.