Answer:
% change in stopping distance = 7.34 %
Step-by-step explanation:
The stooping distance is given by

We will approximate this distance using the relation

dx = 26 - 25 = 1
T' = 2.5 + x
Therefore

This is the stopping distance at x = 25
Put x = 25 in above equation
2.5 × (25) + 0.5×
+ 2.5 + 25 = 402.5 ft
Stopping distance at x = 25
T(25) = 2.5 × (25) + 0.5 × 
T(25) = 375 ft
Therefore approximate change in stopping distance = 402.5 - 375 = 27.5 ft
% change in stopping distance =
× 100
% change in stopping distance = 7.34 %
So to rewrite it so that we can find the side, we just need to isolate the a variable.

So firstly, divide by 6 on both sides of the equation: 
Next, square root each side, and your answer should be 
Answer:
1 and 3, 2 and 4, 5 and 7, and 8 and 65
Step-by-step explanation:
Vertical Angles Congruence Theorem
Answer:
y_c = 2 + 10*x
Step-by-step explanation:
Given:
y'' = 0
Find:
- The solution to ODE such that y(0) = 2, y'(0) = 10
Solution:
- Assuming a solution y = Ce^(mt)
So, y' = C*me^(mt)
y'' = C*m^2e^(mt)
- Back substitute into given ODE, we get:
y'' = C*m^2e^(mt) = 0
e^(mt) can not be equal to zero
- Hence, m^2 = 0
m = 0 , 0 - (repeated roots)
- The complimentary function for repeated roots is:
y_c = (C1 + C2*x)*e^(m*t)
y_c = C1 + C2*x
- Evaluate @ y(0) = 2
2 = C1 + C2*0
C1 = 2
-Evaluate @ y'(0) = 10
y'(t) = C2 = 10
Hence, y_c = 2 + 10*x
Answer:
the first one has one solution because eventually they will cross