To solve this problem you must apply the proccedure shown below:
1. The problem asks for the area of a cross section that is parallel <span>to face ABCD. As is parallel to that face, you have can calculate its area as following:
A=12 cm x 6 cm
2. Therefore, the result is:
A=72 cm</span>²
The answer is: T<span>he area of a cross section that is parallel to face ABCD is 72 cm</span>².
Answer:
13 1/8
Step-by-step explanation:
3/2* 7/2*5/2
= 105/8
= 13 1/8
To ease your problem, consider "L" as you x-axis
Then the coordinate become:
A(- 4 , 3) and B(1 , 2) [you notice that just the y's changed]
This is a reflection problem.
Reflect point B across the river line "L" to get B', symmetric of B about L.
The coordinates of B'(1 , -1) [remember L is our new x-axis]
JOIN A to B' . AB' intersect L, say in H
We have to find the shortest way such that AH + HB = shortest.
But HB = HB' (symmetry about L) , then I can write instead of
AH + HB →→ AH + HB'. This is the shortest since the shortest distance between 2 points is the straight line and H is the point requiered
Answer:B
Step-by-step explanation: