Step-by-step explanation:
You can find the area of a right triangle the same as you would any other triangle by using the following formula:
A = (1/2)bh, where A is the area of the triangle, b is the length of the base and h is the height of the triangle; However, with a right triangle, it's much more convenient in finding its area if we utilize the lengths of the two legs (the two sides that are shorter than the longest side, the hypotenuse and that are perpendicular to each other and thus form the right angle of the right triangle), that is, since the two legs of a right triangle are perpendicular to each other, when we treat one leg as the base, then, consequently, we can automatically treat the length of the other leg as the height, and if we initially know the lengths of both legs, then we can then just plug this information directly into the area formula for a triangle to find the area A of the right triangle.
For example: Find the area of a right triangle whose legs have lengths of 3 in. and 4 in.
Make the 4 in. leg the base. Since the two legs of a right triangle are perpendicular to each other, then the length of the other leg is automatically the height of the triangle; therefore, plugging this information into the formula for the area of a triangle, we have:
A = (1/2)bh
= (1/2)(4 in.)(3 in.)
= (1/2)(12 in.²)
A = 6 in.² (note: in.² means square inches)
Answer:
(x-2)(x+5)
Step-by-step explanation:
I have answered ur question
Answer:Geometry allows students to connect mapping objects in the classroom to real-world contexts regarding direction and place. Understanding of spatial relationships is also considered important in the role of problem solving and higher-order thinking skills.
Step-by-step explanation:
Expected Mean, E(X), is obtained by multiplying each pair of

and its

and add up the answers
E(X) = (0×0.7) + (1×0.2) + (2×0.1) = 0.4
The formula to calculate the variance, Var(X), is given by E(X)² - (E(X))²
E(X²) = (0²×0.7) + (1²×0.2) + (2²×0.1) = 0+0.2+0.4 = 0.6
(E(X))² = (0.4)² = 0.16
Var(X) = 0.6 - 0.16 = 0.44
Translating these answers into the context we have
E(Y) = 0.4×500 = $200
Var(Y) = $110
Answer:
A. 5
Step-by-step explanation:
Parallel lines have the same slope.