The crest is cover distance. <span>The </span>speed<span> of a wave indicate how fast wave is moving. </span>T<span>he speed is the distance traveled by a crest in a given interval of time. Greater distance in same amount of time means wave travel faster.
speed of wave = distance/time.
speed of wave = 0,2 m </span>÷ 0,2 s = 1 m/s.
The most accurately represented John Dalton's model of the atom is: C. a tiny, solid sphere with a predictable mass for a given element
<h3>Further explanation</h3>
The development of atomic theory starts from the first term conveyed by Greek scientists who suggested that every substance has the smallest particles so that the word atomos appears, which means it cannot be divided. So, John Dalton, a British scientist put forward the hypothesis about atoms, among others:
- 1. The elements are composed of atoms which are small particles which cannot be subdivided
- 2. Atoms that make up the same element have the same properties, mass, and size, while for different elements, the properties are also different
- 3. Compounds are composed of two or more atoms in a fixed ratio
- 4. In chemical reactions, atoms after and before a reaction cannot be destroyed, only separation and reassembly occur
Point 3 shows the relationship with The Law of Constant Composition of Proust so that further research on atoms is more developed
Dalton's hypothesis is described as a solid sphere like a very small shot put ball or a bowling ball based on Dalton's hobby in bowling
<h3>Learn more</h3>
Bohr's model of the atom
brainly.com/question/1625635
Rutherford performed the gold foil experiment
brainly.com/question/1859083
The part of an atom that is mostly empty space
brainly.com/question/4089014
Keywords: atom, Dalton, a solid sphere, The Law of Constant Composition
The answer is 4.69 x 10⁻¹⁹ I hope this helped!
Heat energy can be calculated by using the specific heat of a substance multiplying it to the mass of the sample and the change in temperature. It is expressed as:
Energy = mCΔT2520= 10.0(C) (70.0 - 10.0)C = 4.2 J/ kg K